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Lenz-Ising-Onsager problem in an external field as a soluble problem of many fermions
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In this paper an approach to solving the tw@D) and three-dimensional Ising models in an external
magnetic fieldH #0 is developed. The general formalism for the approach to the problem is presented for the
example of the 2D Ising model in the external magnetic field. The paper presents a method obtaining the
Onsager solution and computations of asymptotic forms of low-temperature free energy for the 2D Ising model
in the external magnetic fieldH). The free energy in the limiting case of the magnetic field tending to zero
(H—0, N, M—oo) at arbitrary temperature is also consider@d-(Q). [S1063-651X97)09709-3

PACS numbs(s): 05.50+q

I. INTRODUCTION Yang [5], and recently, alternative derivations have been
published both for the free energy atd, [6—9).

We will briefly describe the well known model of a In spite of its simplicity, the Ising model is not only non-
“magnetic” variety of spins situated on the vertices of atrivial in higher dimensions d=2), but also it has rich
crystalline lattice. The spin dt can be “up” (oy=1) or  structure. By this we mean not only its connection with other
“down” ( oy=—1). A microscopic state of the system is models(for example, with the lattice gas models, binary al-
characterized by orientations of all the spins. Endg§y} of  loys, some models in quantum field the¢®10], etc), and
the microscopic statéo} is composed of two contributions, wide application in numerous domains of statistical physics,
one from the exchange interactions of the spins and debdut also its role as a generator of new ideas and tools, which
scribed by the interaction constahy, and the second from find their use in various areas of physics and mathematics.
the interaction of the spins with the external magnetic fieldThere are sufficiently many examples of such applications
(H): and we will not discuss them hefsome examples can be

found in the monograpfl1], where stochastic Ising models

are considered, and also their connection with Markov pro-
E{o}= _%: koo — H§k: Ok (1.9 cesses with local interactionsVe would like to stress that

this rich structure of the Ising model has maintained a high

where summation is taken over all sites of the lattice. Thelevel of interest in this problem among physicists and math-

; ) L ] ematicians.
key problem is calculation of the statistical sum: : .
In this paper we present an approach to the Ising problem

in external magnetic fieldH), with the nearest-neighbor
1 . : : . .
Z=, exp— BE{c}), B=-——, (1.2  interaction on the square lattice. In connection with that we
{og kgT would like to mention the paper by Schultz, Mattis, and Lieb
[6], who applied it to solve the 2D Ising model without an
whereT denotes temperature akg the Boltzmann constant. external magnetic field. To calcula®®, they used a method
The model described above was introduced by Lenz irbased on a transfer matrix using a transformation to a fermi-
1920[1], and for the one-dimensional case was investigated@nic representation. This deep, clear, and logically closed
by Ising in 1925 2]. An exact solution of the statistical me- paper strongly influenced the author and moved him to
chanical problem for the two-dimension@D) (H=0) case search for the solution of the problem in external magnetic
was found by Onsager in 19448]. We use the standard field. The fundamental idea of the approach of the authors of
name, the Ising model. the papelf6] is transition to a fermionic representaticine
The solution given by Onsager strongly influenced thetransfer-matrix method was essentially used already in the
development of all of statistical physics, and in particular ofpaper by OnsagdB]), and this can be treated in a sense as a
the theory of phase transitions. It was shown that exact calproblem of interacting fermions on the one-dimensional lat-
culation of the free energy leads to evidence that thermodytice. In this paper we use essentially the same idea. The
namic quantities behave in the vicinity of the phase transitiordlifference is the fermionic representation is introduced not
in a way which is essentially different from that in the ap- on a 1D lattice(where theT matrix is expressed in terms of
proximate models, such as, e.g., the mean-field theory. Thiane Fermi creation and annihilation operatars, c,, [6])
result for spontaneous magnetizatigfy, in the model was but on a two-dimensional lattice with the doubly indexed
presented by Onsager at the conference in Florence in 194%rmi creation-annihilation operatotg,,, Com [12].
[4], i.e., five years after the successful derivation of the ex-
pression for free energy. The derivation {8, was given by Il. FORMULATION OF THE PROBLEM
Let us consider the square lattice composelflafolumns
*Electronic address: mkochma@atena.univ.rzeszow.pl and N rows, on the vertices of which the quantities,
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taking one of the two values 1 are defined. We will call the

guantities the Ising “spins.” The multiple indemm num-
bers the sites of the lattice, whemenumbers a row, anth
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tanh(K,) =exp(—2K¥), or sinhX; sinhX}=1.
(2.9

numbers a column. The lIsing model with the nearestone can see that the operatdy in the second quantization
neighbor interaction in external magnetic field is given byrepresentation, that describes interaction of the spins with

the Hamiltonian of the form

HZ_JZE O'nmo'n+l,m_\]12 U'nma'n,erl_HE Onm>
nm nm nm
(2.1

which takes into account anisotropy in the interactidn A

external magnetic field, has rather complicated structure. It is
easy to see that this operator does not commute with the

operatorﬁz(—l)"". As a result the operatdr, also does
not have a very tractable form, i.e., it does not have the
needed translational symmet(§.6). More exactly, although

the operators/; andV, commute with the operatd?, the

>0) between nearest neighbors, and also the interaction &PeratoV, Eq.(2.4), does not commute with the operafoy

the spinso,,, with external magnetic fielti, directed “up”

i.e.,,[P,V]_#0, becaus¢P,V,]_+#0. Therefore we cannot

(0am=+1). The essential problem is calculation of the sta-divide all states of the operatdf=V,V,V,, into eigenstates

tistical sum for the system:

zZhy= > - X

o1=*1 oNMT= T

>

NM
ex 2 (K20'nm0'n+1,m+KlO'nm0'n,m+l
(opm==1) n,m=1

. exp(— BH)

+h0'nm)}, (2.2

where

Ki,=BJ12, h=pBH, pB=1KkgT. (2.3

Periodic boundary conditions are introduced for the variable

o,m- Let us mention here that the statistical su2) is
symmetric with respect to the change-—h whereh is
defined above, Eq2.3).

As is known [6], the statistical sum for the 2D Ising
model in external field fI) in the representation of second

guantization can be written in the form

Z=Tr(V)N=Tr(V,V,V)N, (2.9

where the operator¥;, expressed in terms of the Fermi

creation and annihilation operatm%, c are of the form

M
Vi=(2 sinthl)M’Zexp[ —2K¥ Zl (clem—3
m=

(2.5
M-1
v2=exr4 Kg| 2 (Ch=Cm)(Chre 1+ Cms)
—(~DM(cly—cw)(cl+cy) ] (2.6

m—1

M
Vh:eXp{ h >, exp{in chco
m=1 p=1

(cL+cm>}, 2.7

whereK; (j=1,2,) andh are defined above, E¢2.3), and
/ Mt

of the operatoiP with eigenvalues. = =+ 1, and this leads to
nonconservation of the states with even and odd numbers of
fermions(for details se¢6]). Namely, this is the fundamen-
tal reason which stops solving the problem under consider-
ation within this formalism. Nevertheless, the author does
not share Ziman’s pessimisfi3], which is based on some
misunderstanding, because he actually considers the ap-
proach of the authors of the papgg], but in the end he
writes about limitations of the method of Onsag@}. In fact
Onsager in his approach does not apply the field theoretic
language of the creation and annihilation operators as it is in
the approach of the authors of the pap@r The method of
Onsagef3,14] really shows some limitations when one tries
to apply it to solving the 2D Ising model in external mag-
netic field, or for solving the 3D Ising model. On the other
band, we have a completely different state of affairs than for
the approach of the authors of the pafp@ where in all its
beauty the field theoretic language of the method of second
quantization is used. The approach of the authors of paper
[6] allows for generalizations. We intend to present one such
generalization in this and other papers devoted to the Ising
problem.

Coming back to the difficulties mentioned above which
are connected with the operatdy, Eq.(2.7), it is now clear
that to overcome the troubles within the approacf6il) one
should find an appropriate method of substituting the opera-
tor Vy,, Eq.(2.7), with another one which would be equiva-
lent to the former in the sense of correct counting of the
interaction of external magnetic field with the spins of the
system. Namely, as could be easily seen, the only contribu-
tion to Z, Eq. (2.4), from the operatoV, comes, in the
representation of second quantization, from the “even” part
with respect to operatoms;rn, Cn, of the operato/y,. In prin-
ciple such a transformation could always be done. However,
in practice this task seems to be hopeless, and the direct
method of calculation of the commutators used by Onsager
for solution of the problem without external field here is
simply inapplicable. We believe there is not an effective
method to do that, at least if one stays in the space of given
dimension(d=2 for the initial variablesr,,,,, andd=1 for
the variables in the representation of second quantizaﬁpn
andc,). Nevertheless, as we will show below, there is an
effective method of transforming the magnetic operatgr
Eq. (2.7), after which the transformed operator allows for the

M=Z27"cCn, is the operator of the total number of particles Fourier transform of the operatdf, Eq.(2.4). The idea con-

andK’ andK; are connected by the following formulas:

sists of formulating the problem in the space of a higher
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dimension than the former one, then to pass to the represen- M ;

tation of second quantization with the operatgrand after- Vi|0)=cost'(h) [[ e*m|0), a=tanHh). (3.5
wards to perform a limit transition with respect to one of the m=1
interaction constants, by going with it to zero. Having done
this, a possibility appears for effective rebuilding of the op-

erator which is responsible for interaction of the spins of the

system with external magnetic field. Below we will briefly

present this approach on an example of the one- dlmen5|on¥¥le will omit below, for brevity, the ket vectof0). This

Ising model which is then applied to solving our basic prob- should not Iead to mlsunderstandmgs Further we note that
lem. the operatorsc and ¢/ commute with the commutator

[cl.cl1=2clcl. As a result, using the Hausdorff-Baker
formula (a, 8= const),

Deriving the formula(3.5 we dragged all phase factos,
entering the operatov,, through the vacuum staf@) and
om|tted the annihilation operators;,,, becausec,|0)=0.

IIl. ONE-DIMENSIONAL ISING MODEL

In the beginning of the consideration of the 1D Ising explax)exp By)=explax+ By +(aBl2)[x,y]},
model we have already the complete set of formyag)— 3.6
(2.8). To apply them to the 1D Ising model one should take
simply K;=0 andN= 1. Then, after uncomplicated transfor-
mations, taking into account the expressig@as), one can
write the following formula for the statistical sur(2.4) M M-m

oo, 3, clch.

[Z(K;=0)=2Z*]: Vh—cosH\"(h)exp{aE ch )
&

Z*=Tr(VIV,V,), (3.1 (3.7

after application of this formuld3.6) M—1 times to the
operator(3.5), this operator can be represented in the form

where « is defined above, Eq3.5). Since all terms in the
operatorV,, Eg.(2.6), contain bilinear products of the Fermi
operators, and the following equality is satisfied:

where the operatorg, andVy, are defined above, Eq&.6)
and(2.7), and the operatoy7 is of the form

M

M
Vi = Hl [1+(_1)°§1°m]. (3.2 exp @ > ch
m=1

m=

M
=1+a2 CTm,
m=1

Introducing in an appropriate manner the basis in the rep,
resentation of occupation numbgt8nite-dimensional Fock o5 jinear irc!. give null contribution. As a result, we can

spacg: |0) is the vacuum staten|0)=0; CfT“|0> is a one- write the foIIowm expression\(,— V}) for the operator
particle statein=1,2,3 .. .), etcJ, and calculating the trace V. Eq. (3.7): g exp Mh—Vh) P

in Eq. (3.1) we get

it is easy to see that in the pairingd( . . .)|0) the compo-

M M-m
zr= 2 (I(VIVaVi)ll)=2"(0](VoVi)[0), (33 COSW(h)eXp{“Z,gl 2, Cnmip| (38
all (1)

where on the left hand side of E¢3.3) the summation is Now one can easily see that the operafor (—1)" (M
over all stategl). It is easy to see that all the matrix ele- ==M_.c!c) commutes with the operator¢, and V} ,
ments(l|(...)|l) in Eq. (3.3 are equal to zero thanks to the and, as a consequence, the states with even or odd numbers
phase factors £ 1)mm entering the operatov* , with the ~ Of fermions are conserved. Hence the statistical ZImEqg.
exception of the vacuum matrix elemepot( . . .)|0), for this (3.3), can be represented in the form
matrix element contribution from the operai@.2) is equal . M -
simply to 2¥. From this we obtain the right hand side of the Z* =2"(0|(Vz V})[0), 3.9
equality (3.3).

Let us mention now that the operatorg, Eq. (2.7), can
be represented in the form M

Vv —exr{ Ky

E (ch—cm)(ChiitCmin) |, (3.10

where

M
Vip=cost(h) [T [1+ ¢m(c! +cptanth], (3.4
m=1 and the+ sign in V5 corresponds to the even states, to

which are assigned the antiperiodic boundary conditions and
the — sign to the odd states, to which are assigned the peri-
odic boundary conditions.

Passing in a standard way to the momentum representa-
tion

where the phase factafr,, is defined in an obvious way, Eq.
(2.7), and we applied the identity

exp(pt)=cosh+p sinkt, p?=1.

Now, “dragging” the operatoV,,, Eq.(3.4), through the ket il
vector|0), after a number of transformations, we obtain the m:M
following representation fow,|0): M

Eq: eiqmnq ,
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we obtain after some simple transformations oh, Eq.

(3.9), the expression

Z*=[2 cosmh)]M<0|<0<1;[< Voq ;q)|o>, (3.11
where
Voq=exp 2K [ (7 mq+ 7' qm-1)cosq
+(ngm-qt 7" qny)sing]},
ﬁqzexp{az

in which the termd (+q) in the expression foW,,

1+cogy
sing

n*qng+f<q>+f<—q>”,

1+e7 i@
2 simy

f(q)=— oy,

and in the case of antiperiodic boundary conditions should bg,

omitted.

Finally, calculating the vacuum matrix element for fixed
g, after some uncomplicated transformations, we geZfar

Eg. (3.1)), in the case of even states the expressioh)(

z* =[2 costih)]™ ]

o<q<m

[coshX,—sinhX,coq

+ a®sinhXK,(1+cog)) ]
M

=[2 costih)cost, 1" [] |1+Z3+2z,y
m=1

_ 12
M) } ’ (3.12

- 222(1—y)cos< v

where z,=tantK, and y=a?=tantth. Obviously, for N

noninteracting Ising models in external magnetic field the
statistical sumW(h) is equal to theNth power of the expres-
sion(3.12), i.e., W(h)=[Z*]". In the case of odd states, as

one can easily show, the following equality is satisfied:

Z*=27* . (3.13
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equivalent, Eq(3.8). Additionally, as we mentioned above, a
bit different representation of the statistical sum for the 1D
Ising model(3.1)) finds its application in graph theofyt5].
Finally, this will help us to save time and space considerably
when we discuss the 2D and 3D Ising models in external
magnetic field.

IV. TRANSFER MATRIX

In this section we will briefly consider the representation
of the statistical sum for the 3D Ising model in external mag-
netic field H, applying for this purpose the well known
transfer-matrix methodl7,8,16,17. The reader can find an
exhaustive and outstanding presentation of the method in the
monographg7,8], where other necessary information about
application of this method is also presented.

Let us consider a simple cubic lattice consisting Nf
rows, M columns, anK planes, in the sites of which the
“spins” ok are situated, which take on two values;
=+1. The Hamiltonian for the 3D Ising model in external
agnetic fieldH with the nearest-neighbor interaction is
given in the form

NMK

H=~- (Jlo'nmko'n+1,mk+JZUnmkUn,m+1,k
(n,m,k)=1

+J30'nmk0'nm,k+l+H0'nmk)a 4.7
where the multiple indexamk numbers the sites of the
simple cubic lattice X M X K), andH is the external mag-
netic field directed “upwards” §,m=+1). The constants
(J;>0) take into account anisotropy of the interaction of the
Ising spins. There are periodic boundary conditions imposed,
as usual, on the variables, . The statistical sum for the
systemZ;(h) we write in the form

Zyh= 2 e A"
o111=*1 onmk==*1
= 2 eX[{E (Klo'nmko'n+1,mk
{onmi= =1} nmk

+ Kza'nmko'n,m+1,k+ K30'nmk0'nm,k+l+ hO'nmk) )

Let us note here that the representati8ri2 unexpectedly
finds an application in graph theory. Namely, with help of

the representatiorni3.12 one can calculate the generating . i
function for Hamilton cycles on the simple rectangular lat-Where the quantitiek; andh are defined as above, 5.3
tice (NXM) [15]. [here and everywhere below summation oxenk (or nm)

Finally, we obtain the following expression for free en- @nd also multiplication ovenm will mean summation or
ergy per spin in the thermodynamic limit: multiplication over the full set of mt_eger_ numbers from 1to
N, M, andK over each corresponding index, respectiyely

In analogy to the two-dimensional case, it is convenient to
introduce the notion of thk layer, which is understood as a
set of Ising spins in all sites of la layer:

4.2

1
—BF=lim — InZ* =In[eX2cosh
M—w

+ (e®2sinPh+ e~ 2K2) 12, (3.14

i.e., the known classic expressipn,8]. We paid so much

attention to the 1D Ising model because we wanted to showhen summation in Eq(2.4) and can be conveniently ex-
in the first place the effectiveness of the proposed method afcuted over the layers,, after writing the expression for
transformation of the magnetic operaid, Eq.(2.7), toits ~ Zz(h) in the form

anm=ak=1{0nmy, With k fixed.
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K
Zg(h) =2 -2 exp[ > [2 (K10t 1mkt K2on mi 1k
a; ag k=1 | nm

|

+ KBUnm,k+1+ h) omk

— {onmt {”nmz},,, {onmit
321 ;k T{Uan}T{f’nmS} T{Unm,K+1}’ (43)
where
T{Unmk} =ex 2 (K1ons1mkt Koo me 1k
{‘Tnm,k+1} nm ! ! !
+h) onmi ex;{ K3%} OnmkInmk+1 |-
(4.4

We will impose now periodic boundary conditions on the

indicesn, m, andk, taking

OnmK+1~0nmi-

(4.9

ON+1mk=O01mk: OnM+1k™ Onik,

As a consequence of what was stated above and of the co

ditions (4.5 we can writeZ3(h) in the form

Z3(h)=Tr(T)X, (4.6)

3835

and we will continue with these assignments till the end of
the paper.

Further, as is known16], if we introduce three sets of
2"M_dimensional matrices#{%:?) of the form

H*=101Q - @ PV?® - 111 (4.12

(N and M are factory where the Pauli matrices®¥%? are
situated in these products at tienth place, the matrices
T123andTy, Egs.(4.8-(4.11) can be rewritten in the form

— Z Z
T,= EXF{ Kl%:n TamTn+ 1,m> )

T2=exp( Kz% TﬁmTﬁ,mH)’ (4.13

nm

Ts=(2 sinh2<3)’\”\"’2exp< K3 > Tﬁm), (4.14

Th= ex;( h> Tﬁm) : (4.19
nm

}(]v_here the quantitiek; andK3 are connected by the condi-

tions of the form(2.8), and the spin Pauli matrice§.*, Eq.

(4.12, commute with each other for differentnin)

#(n'm’), and simultaneously for each giverm these ma-
trices satisfy the standard conditiof9]. It is easy to see

whereT is the transfer matrix, matrix elements of which arethat the matricesT; ,,, Egs.(4.13 and (4.15, commute
described by equalitie@l.4). Matrix elements of the transfer with each other, but they do not commute with the matrix
matrix of the layer-layer Ising model can be written in a bit T, Eq. (4.14). Obviously, forh=0 we obtain the known
different form [7], but all these representations are in factformulas[7] for the matricesT, , 3, describing the three-

equivalent. According to the formul@.4) the matrixT can
be represented in the form of a product of the matrites;
andT,,, each of the same dimension\"®x 2N¥):

T:T3T2T1Th y (47)

where

4.9

11,y a
TA1 NM  — S

= b b H eKZanman,m+l
2pqq.-bym 811917 """ aNMPNM !

nm
4.9
H eKlanman+ 1,m’

. (4.10

1by1....bym 5311b11’ e ’§aNMbNM

aig,-ANM hanm
T 5a11b11’---'5aNMbNM1n_r[ne . (41D

dimensional Ising model on a simple cubic lattice. To the
transition to the 2D Ising model in the interaction constants
K, andK, corresponds taking ;=0 or K,=0 and simulta-
neously removal of summation over (N=1) or overm
(M=1), respectively. In this way we obtain the standard
expressiong6,8] for the 2D Ising model in external mag-
netic field, and the operator,, Eq. (4.13, is identically
equal to the unit operatof,=1 in the first case, and,

=1 in the second case, respectively.

A bit different situation occurs in the case of transition to
the 2D Ising model in the interaction constdf. In this
case one should take;=0,K=1, i.e., omit summation over
k. As a result one can arrive at the following formula for the
operatorT,, Eq. (4.14:

Ti=Ta(Kz=0)=]] (1+ 7).

nm

(4.19

Namely, this structure of the operat® enables, finally,
effective rebuilding of the magnetic operaffy, Eq.(4.15,

as was shown above on the example of the 1D Ising model.
In this case we can write the expression for the statistical

Here we introduced a new way of indexing the matrix ele-sum for the 2D Ising model in the form

ments in the expressio@.4):
{o11,- - onmd =211, .- Anm}s

{0'11J<+1a---10'NM,k+1}E{b11y---abNM}a

Zy(h)=Tr(T3T,T,Ty), 4.17

where the matrice$, ,j, are defined by the formula@.13
and (4.15, and the matrixT3 is defined by the formula
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(4.16. The advantage of the representation of the statistical

sum(4.17) is, in the opinion of the author, in a sense obvi- T2=9X+<22 (Tam+ Tom) (Tome1t Tamed) [» (5.7
ous. We will write about this issue additionally below. As nm

will be clear from what is stated further, the matiiixT, T,

can be conveniently written in the for‘rﬁﬁ’z‘TleTl’2 where Th:exp{hZ (rhet T | (5.9
we applied commutativity of the factors, following from nm

commutativity of the matricesr?,,. The statistical sum

(4.17 we rewrite in the form T’?jzlnl1 [1+(1—27) 7 ]- (5.9

Zo(h)=Tr(T3 TR, T.T7%), (4.18 . _ "
As was mentioned above, the Pauli operatgys behave

where the matrixr 2 is defined by the formula as Fermi operators when considered for one site, and as Bose
operators when considered for different sites. In order to
transform to the fermionic representation, i.e., to the Fermi

(4.19 operators in the whole lattice, we will introduce an analog of
the Jordan-Wigner transformatiofs.1), which will enable

Below we will use both the expressida.17) and the repre- us to express Fermi operatorﬁ%,cnm) by Pauli operators

sentation(4.18), having in mind further applications in graph 7nm fOr the two-dimensional system. Namely, there exist in
theory[15,18. the two-dimensional case two sets of such transformations

[12], which we represent here in the form

Th=TH?= exp[(h/z)n}n)1 2ol

|7TE 2 Tk|7'k|+'772 ol Tl

Tnmi

. . o 5.1
Schultz, Mattis, and Liep6] showed that thd matrix in 1w I (.10
its standard representation can be expressed in terms of the . o I
anm=exp i7Y, 2 mgmatim Y T | Toms

V. TRANSFORMATION OF T OPERATOR n-1 M
- E

A. Introduction of fermion operators

second quantization Fermi operators. For this aim they ap-
plied the known Jordan-Wigner transformatidi®] which
enable expression of the Fermi operatoc%1 ) for the and
one-dimensional system by the Pauli operatats)([8]:

+

N m-1 n—1
m-1 m-1 3$m:exi{i772 Z kITkI+|7TZ Tkakm) Tam:
Cm=ex Iwz 7' T | Tms C =ex Iwz 7' T rT1 k=11=1 (5.12

=
(51) N m-1 n—-1

ﬂnm=exp(iw2 > mTatiT, T;mr;m) Tom
As was shown in[12], there is an analog to the Jordan- k=11=1 k=1
Wigner transformationéb.1) which generalizes the former to
the two-, three-, and-dimensional systems.

For this aim we introduce first the following variablegy

to the formulag4.13—-(4.16):

It is easy to show, using formula(§.3) and (5.4), that the
operators @nm,anm) and (Bnm,ﬂnm) are Fermi operators in
the whole lattice, i.e., they satisfy anticommutation relations

for all sites:
Tt 2(TnmilTnm), (5.2 {axm,anm}Jr:l, (axm)2=(anm)2=0,
which satisfy anticommutation relations for the same site: {alm!a;'m’}”r: <+=0, (nm#(n'm’), (5.12
{7amsTamt+ =1 (7am)*=(7am), (5.3 and analogously for th@ operators. There are also inverse

. . . . transformations:
and commutation relations for various sites,

n-1 M m—1
[Toms Torme]==0,  (NM)#(n'm’). (5.9 Tnm_EX[{IWkZ 2 akpakp-i-lﬂ'z anpanp al
Quantitiesr,,, are often called Pauli operators. The corre- (5.13
spondences etc., which can be easily proved by application of the iden-
Tom=—2(TrTam—3)»  Tom=Trm™+ Tnm (5.5 tities
enable us to rewrite the expressions Tar,, and T , Egs. eXF’(”% T:anm) Iln_r[n (1_27:mT;m):£[n Th

(4.13—(4.16), in the form
from which one can easily derive the equalities

5.6
© 7'annm anmanm Bnmﬁnm (5.19

+ - + -
le exp{ Kl% (Tnm+ 7-nm)(7-n+1,m+ 7-n+1,m) '
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The formulas(5.14) express conditions of local equality of B. The Ty, and T3 operators
the occupation numbers far and 8 fermions in one site. Before writing theT operators(5.6—(5.9) in terms of

Further, as it follows from Eqs5.10, (5.1, and(5.13, @ germj gperators, let us make a few remarks. First, the opera-
and B operators are connected by canonical nonlinear trangg = Eq.(5.9), can be expressed in terms @fas well as

formations: B operators, because of E(p.14):

T =eX | nm T ) nm:ex I nm nm:
¥nm Mi7enm Bams @ Pl 7 @nm) B T§=H [1+(—1)“:m“nm]=1n_r[n [l+(—1)’8;mﬂ”m]y

(5.19 nm (5.20

N m
oom=| 2 2 +k§=: =2+1 =L 1BpbBup: where the basis in the Fock representation should be chosen
S0 as to be expressed in terms of ther B operators, re-
spectively. Second, the operatdrg,,, we can also express
in terms of eithew or B operators. Nevertheless, the operator
T, we write in terms of thex operators and the operatdg
T we write in terms of theB operators for reasons which will

[‘anvanm]fz"':"':[(anugnm]fzo- (5.1 become clear later.

Now, due to Eqs(5.10 and (5.11) we can write the op-

Commutation relations among and 3 operators are more eratorT,,, Eq. (5.8, in the form
complicated. Namely, as one can check by direct calculation,
the following commutation relations hold:

where the operatorqsnm obviously commute with the opera-
torS (s @nm) and B, Bam). i-

Th= eXF{ h% enm(a;m"_ anm)}
{@fmsBrmb+ ={Bam: e+ = (= 1)%m, (5.7

=exgh Tt , 5.2
[anm,lgn,m,]7:...:[a;m,lgllm,]7201 F{ %:1 Uam Bam ﬂnm)} (5.21
nsn-1, m=m+1 whereé,,,, is defined as the first factor in E.13), and ¢y
n=n+1 m=m—1 (5.18 s defined by
and N m-1 n—-1
Ynm= eXF{ Z 21 Blpﬁkp+iwgl Blmﬂkm}
{anmyﬂn’m’}+:"':{aimyﬂirm,}+:0, (5.19

Transformation of the operatof , is a bit more compli-
in all other cases, where,,, are defined above, E¢5.15. cated. Taking into account cyclic boundary conditiohs),
This way we get rather specific structure of commutationwe will write first a sequence of equalities analogous to Eq.
relations amongx and 8 operators in the lattice, although (5.14:
this structure shows some symmetry. Here is the right place
to compare the situation described above with the situation A _(_1)&,“'31‘ IBT
we get using the second quantization method. For a system N,m*1m N.m~1,m:
composed of different particles one introduces the second A
quantization operators of different kinds for different par- TamTim=—(—D)Nmgl 810,
ticles. The operators connected to either bosons or fermions (5.22
satisfy the standard commutation relations. As far as the op- o, { .
erators for different fermions are concerned, it is usually as- ™NmTim= (— 1) " mBnmBim,
sumed without any prodf20] that within the limits of non-
relativistic theory they could be treated formally as - - N
commuting or anticommuting. Both assumptions lead to the NmT1n= (= 1B mBim,
same results when the second quantization method is ap-
plied. Nevertheless, in the relativistic theory, which allowsand
for transmutations of various particles, we should consider
creation and annihilation operators for different fermions as
anticommuting. On the other hand, in our case we deal for-
mally with “quasiparticles” of thea and 8 types underlying .
separately the Fermi statistics with commutation relations TomTna=—(—DMal yan g,
among particles of different types being, however, dependent (5.23
on relative position of these “quasiparticles” in the sites of a _ +
lattice. Such a situation, as far as is known to the author, wadnmTn1=(— )" M1 TamTna=(— " "ot Man 1,
not present in earlier works on application of the second
guantization method. where

ST VT
7'n,MTn,l_ ( 1) nan,Ma'n,l!
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. . M . Of course, we can also express the operalgr&nd T, in
g, =(—1)Mn, M,= E almanm, gpn=(—1)"m, terms of thex operators and we can write down the formulas
m=1 if they are necessary.

It was shown above, E@4.17), that the statistical sum for

A N + the 2D Ising model in external magnetic field can be repre-
Nim= nzl BrmBnm, (5.24 sented by the trace of the operafor which was expressed
here by the Fermi second quantization operators. Introduc-
which can be obtained by using the formul&sL0—(5.13. ing, as in the one-dimgnsional case, a basis in the o_ccupation
Therefore we can write the following representations for thenumbers representatlofgo] for the « and f_ermlons
operatorsT; ,: 2 _-d|men5|onal space in the_Fock representapqnd cal-
' culating then appropriate matrix elemegtT|l), it is easy
M [N-1 to see that because of multiplicative character of the operator
T1=exp| Ki> | > (BY = Bom) (B 1t Brsim) 3, Eq.(5.20), all matrix elements, besides the vacuum ma-
m=1|n=1 ’ ' trix element(0| T|0), are equal to zero. For the vacuum ma-

trix element contribution from the operat®} is equal sim-

— O Blim— Bm) (Bt Bl,m)} ] , (5.2  ply to 2"V, and we can writ&,(h), Egs.(4.17 and(4.18),
in the form
N [M-1 . . Z,(h)=2"M0[(T,T1Ty)|0)=2""O0| (T2 T, T1 Thi2)|0),
T,=ex KZEI mEzl (apm— anm)(an,m+1+an,m+1) (5.3

where the vacuum sta}@) is defined in the standard manner,

—Gn(apy— anw)(ap o+ an,l)”- (5.26 @nml0Y=Brm0)=0, n(m)=1,2,... N(M),
(5.32
Finally, let us express the operat®, in terms of theg 54 operatord; ,, are defined by the formula®.21) and
operators: (5.25—(5.27). Let us stress that the vacuum state82 for

the @ and B8 fermions can differ among themselves at most
2 N + t by a constant phase factor, which in the given case can al-
= Xom( Bam™ Bam) (Bnms 1+ Bom1) ways be taken to be equal to unity. However, it is no longer
true in the case of multiparticle states for #aend 8 fermi-

-l " " ons, because in this case the essential role begins to play

= Gxnam(Bam= Bam) (Baat Bnd) | [ (5.27  phase factors £ 1)¢nm Eq. (5.15. The one-particle states
are an exception for which, as can be easily found from Eq.

(5.15, we have

alJ0y=(—1)¢mg! |0)=p! |0),

_ ; t _ s
ex;{mn}% ’8”’“’8”"‘} (=1)% for all nm. In all other cases the and g states will differ
(5.28 from each other by their sign which depends on indices
N n-1 of the corresponding sites. This very fact implies the main
Xnm= ex;{iw > Bl BmtiT ﬂivmﬂﬁk]mﬂ} difficulty in the proposed approach to solving the problem
k=n+1 k=1 under consideration. This difficulty can be, however,
avoided.
and we applied the relations analogous to E®23, but Let us make two remarks here. It is obvious that the rep-
expressed in terms of th@ operators. The operat&intro-  resentation5.31) for the statistical sunZ,(h) does not de-
duced above, Eq(5.28), is the operator of the number of pend on the kind of variableg or 8 operators with which
particles, which is connected with the operatbrsand M, we introduce the basis in the representation of occupation
Eq. (5.24), by relations numbers, because equality of local occupation numbers
(5.19 holds for thea and 8 fermions. Further, we expressed
R R Mo . N M the operatoiT, in terms of thew and 8 variables, Eqs(5.26)
S= E M,= E Nn, G= H On= H Om- and (5.27), although we will work mainly with the expres-
n=1 m=1 n=1 m=1 5.2 sion(5.26. The reason is that in the representat{6r27) for
(529 T, the operatorg,,,, are present, Eq5.28. They are phase
factors and it is difficult in practice to remove them. The
difficulty arising from the presence of these operators is of
the same kind, which was found by the authors of p&fér
who considered the case with external magnetic field. Simul-
taneously, the representati¢h.26) for T, does not involve
- - the phase factors, justifying the choice. Nevertheless, the ex-
{G anmt+="={G,Bnmt+=0. (5.30  pression(5.27) for T, will be necessary in the analysis of the

M-1

N
TZZEXP[ K22
n=1

where the operatmé and x,, are defined by the formulas

GEEX[{i’JTE al anm
nm

It is easy to see that the operat8r Eq. (5.28, commutes
with the operatord’; andT,, Egs.(5.25-(5.27), but it does
not commute with the operatdr,, Eq. (5.21), because the
following relations are satisfied:
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boundary conditions, which play an important role here. An(5.31) for Z,(h). Exactly in the sense one should understand
analogous statement applies to the operdtpr which we
expressed in terms of the and 8 variables, Eq(5.25, and
which also does not contain phase factors of the type,gf
The essence of our approach lies in the structure of the tranghe notationT}/, for the transformed bra vectdf| Ty, and
formations(5.10 and(5.11), which allows for expression of the transformed ket vectof,,|0), respectively, omitting
the operatord'; , in the form(5.26), which does not contain further bra and ket vectors of the vacuum stgé|0)). Con-

the phase factors.

Now, we transform the magnetic operafiay, Eq.(5.21),
or more exactly the ket vectdr,|0), entering the expression eratorT,,, Eq. (5.21), we represent in the form

Th=(cosrh)NMex;{ aY, B
nm

exp{ (2%

E

HMZ

the equivalence of the two operatofg and T , acting on
the vacuum stat¢). Below we will omit |0), as this should
not lead to misunderstandings. Analogously, we introduce

tinuing with considerations analogous to these, which gave
us the expressiof8.7) in the one-dimensional case, the op-

where a=tanth. Analogously, the operatofB,}, we write in the form

| h NM
Th/2: COShE ex M% dnm

r = p—
Thi2 ( cosh 5

NM
eXF{ME Bim
nm

eXpl’ )7

exp{,u nz

=

E

?Mz

uMz

whereu=tanh{/2). The operator3,, andT'h’,r2 are of rather
complicated structure. However, they no longer contain théhat the operator§, ,, Egs.(5.29—-(5.27), contain only bi-
phase factors. Substituting the expressi@hs83—(5.35 to
the equalitieg5.31), the statistical surd,(h) can be written

in the form
Zy(h)= 2NM<O| (TleT: )|0>,
or
Z,(h)=2"MO|(T{ ToT,TF + w?AT! ToT,T7 B)[0)

=2""(0|(U;+U5)[0),

(5.39

(5.37

where the operatord; , are defined in the obvious way, and

the operatord; andT/, are given by the formula.33-

(5.395), in which one should omit the factors

exp( a% ﬂﬁm), ex;{ M;ﬂ anm), ex;{ M% ﬂam)!

and the operator8 andB are of the form

AZE Xnm; BZE me
nm nm

(5.38

In derivation of Eqs(5.36) and(5.37) we used the fact that

the diagonal matrix elements for the product of an odd num;
ber of Fermi operators are equal to zero, and that the follow.

ing equalities are true:

exr{ aZ anm(ﬁﬁm)} =1+ az anm(ﬂgm)*

M-—m N-n M

RIS B | RS
p= n=1 k=1 m=1

M—-m N N-n M T

Z An m+ pa'nm+ 2 2 Anik,m' Xnm ] ) (5.39
p= n=1 k=1 m,m’ |
M—-m N-n M T

t ot t
p§=:1 ﬁnmﬂn’,m+p+n§=:1 e m§=:l nmﬂn+k,m ’1 (5'33

wherea is a c-valued function. One should remember also

linear products of the Fermi operators. With this ends the
rebuilding procedure for the magnetic operator.

C. The boundary conditions

With the aim of further simplification of the operatdrs ,
we should consider boundary conditions for theand B8
operators, taking periodic boundary conditions for the Pauli
operatorsr,,, Eq. (5.2, in both indices §m) as a starting
point. Let us briefly discuss this problem here. First, since all
terms inT,, and T}, contain bilinear products of the Fermi
operators, the following formulas are valid:

[G,T:]-=[G,T,]-=[G,T{]-=0, (5.39

which shows that the states with even or odd number of
fermions are preserved as well for theas for theg par-
ticles. The operatoB, entering Eq(5.39), is defined above,
Eq. (5.28. Analogously, the following formulas are true:

[G,Uy]_=[G,U,] =0,

where the operatorll, , are defined above. However, the
operatorsy, andg,,, Eq. (5.24, do not commute with the
operatorsT=T,T,T) or U=U;+U,, Eq. (5.37), and this
fact implies some difficulties. First, let us note that the fol-
Iowmg equalities hold:
G:H gn:H gm’
n m

)\é:H )\gn:H )\gm’
n m

(5.40
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where by\g, N5, and\; we denoted eigenvalues of the Bliim=+Bim: Bniim=TBim. Ag =—1
~ ! ! ! ! m
operatorsG, g,, andg,,, equal+1.
Let us consider first the case corresponding to the state (m=12,... M),
with even number of fermions\g=+1). In this case, as (5.43

one can easily see, we should choose antiperiodic boundary Bl wii=+Bl, Bamii=+Bar (N=1,2,..N),
conditions for theB operators with respect to the second ’ ' ’ '

indexm (for all n), and antiperiodic boundary conditions for

the « operators with respect to the first index(for all m), ne=II ng =(-DN=]] 7y =(—D)M=-1,
ie., no " m

for N andM odd. It is obvious that the constraints on parity
T __pt __ _ of N andM are not important here, because we can always
Pomer="Borr Bamer==Par (N=12,... N)('S 47 chooseN andM in the form (N=2N'+1, M=2M'+1),
' and then go to infinity wittN’ andM' independently.
One can show exactly that the boundary conditions for the
Aim=—aln, aniim=—aim (M=12,...M). a and B operators chosen this way are not contradictory, if
' ' we take into account simultaneously the conditions of local
equality of the occupation numbers for theand 8 fermions,
Then the boundary conditions for th& operators with re- Ed. (5.14. As a result we can write down the following
spect to the first index depend org,,, and the boundary €xpressions for the operatdfs,, Egs.(5.25 and(5.26:
conditions for thea operators with respect to the second

indexm depend org,,. More exactly, it depends on at which + NEI::I T T
step we fix the eigenvalues; and\ , respectively. The Ty=ex Klnym=1 (Bom™ Bam) (Bnsam™ Bnsram) |-
only limitations on the choice of the eigenvalues and corre- (5.49

sponding boundary conditions give equaliti€és40. The

whole freedom in the choice of boundary conditions consists . N,M

of 2N possible boundary conditions for the operators in T, =exp K, 2 (a;m— anm)(a;mﬁ @nm+1) |

their second index, and"2possible boundary conditions for nm=1 (5.45

the B operators in their first index. Detailed analysis shows '

that we can, wr;hout Iqsmg generqhty, choose homoge_n.eo%here the upper sigf) corresponds to the states with even

boundary conditions, i.e., antiperiodic boundary condl'uonsnumbers of fermions Ng=+1), and the lower sigr(—)
corresponds to the states with odd numbers of fermions

for the « operators in their second indewr, which corre-

sponds to X3 = +1) for eachn, and antiperiodic boundary (A\g=—1), with the appropriate boundary conditions, Egs.
conditions for theg operators in their first index, which  (541)—(5.43. This way, the form of the operatof, , for
corresponds toN =+1) for eachm, i.e., the even and odd states is preserved. What is changing is

only the boundary conditions.

aE,M+1:_aE,1v A M+1~ ~ Ant, )\gn:+1
VI. THE PARTITION FUNCTION
(n=12,...N), In this section we perform all the calculations for the sta-
: : tistical sum written in the fornt5.36), and in the end of the
Bn+im="Bim: Bnrim="Bim, Ay =T1 section we only give the results fdg(h) written in the form

(5.37 symmetric in the magnetic operator. This can be done

(m=1,2,... M), almost automatically, since all calculations in the latter case
(5.4  are analogous to the ones given below.

Collecting all the results derived above, we can write the
o= 1—[ Ng, = (+ 1)N= 1—[ Ny, = (+ M= 41, following expression for the statistical sufb.36):

n m

Z,(h)=(2 cost)“™(0[T[0), T=T;T;T;, (6.1

for each parity of the numbefd and M. Analogously, one . . )
can show that in the case of the odd stateg< —1) the where the operators; and Ty, are defined by the formulas
boundary conditions for the and 8 operators can be written (5-33, (5.44), and(5.49. In the formula(5.33 one should

in the form only omit the factor exp{3,3",), and move the constant
factor (cosh)™M out of the expressio0|( . . .)[0). Let us
aL+1,m: +a“{’m, ansim=t i (M+1,2,... M), recall before the diagonalization of the operator in Eq.

(6.2), in which the multiplicative componen@2 andTy are
expressed by the Fermi operators of thand 8 types, that
these operators satisfy the mixed commutative relations
(5.17—(5.19. As a result also their Fourier transforms will
(n=1,2,... N), satisfy in general rather complex commutative relations.

T _ T _ o
anmr1=tany, anme1=tang, Ay =-1
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A. Momentum representation it down here. We only mention that it plays an analogous
role to the role played by the functiof(q) in the one-
dimensional case, E¢3.11). We used commutativity of the
operatorsT; {q,p) andT;, (qg,p) for different (g,p) to write

the expression&.5—(6.7). Namely,

[T1(q.p), Tr(a’,p)]-=[T5(a,p),T5(q’,p")]-

Let us pass now to the momentum representation:

¢ explim/4)

- t
“nmT T (NM) T2 £ S

ﬁT :equ’n-/4) e_|<nq+mp)77T (6 2) + +
MmNV 6 ap’ ' =[Th(9,p), Th(a’,p")]-=0,
where the factor exp/4) was introduced for convenience. @S ¢an be easily verified. The statistical s(érl) we rewrite
Antiperiodic boundary conditions give'dN=—1, ¢PM=  now in the form
—1, where
Z%(h>=(2cosrh)NM<o T2 (q, p)}
N 37 N 6.3 o<q,ps<w
q(p)= N(M) NV T (6.3 -
. . X TE(a,P)Th (,p) 0>, (6.9
and the periodic boundary conditions gie¥N=1, e'PM o<gpsm "

=1, where where |0) is the function of the fermionic vacuum in the

2 At space of occupation numbers in the momentum representa-
q(p)=0, iN(M)’ iN(M)' e (6.4  tion. This function was denoted in the same way as in the
“coordinate” representation but this should not lead to any

Substituting Eq(6.2) into Egs.(5.33, (5.44), and(5.45 we misunderstandings We used also commutativity of the op-
get after straightforward transformations the following ex-€ratorsT1 (q,p) and Ti(q,p) for (g, P)?ﬁ(q ,p’") to write
pressions for the operatofs , and T}, : the formula(6.8). The operators 4,,,£50) and (7qp, 740)
satisfy the standard commutation relations. On the other
+ + + + hand, the commutation relations mixing them are of rather
Ty =ex 2K10§%@ [(%ap7apt 7g,-p%a-pT 7-ap7-ap  complex form, in contrast to the relations in the “coordi-
nate” representation5.17—(5.19. This, by the way, is the

+ ﬂtq,fpﬂfq,fp)COECH ( niq,fpng,p_k niq'png’—p cause of the lack of commutativity of the operat®ss(q, p)
and T; (q,p)Th (q,p) for (g,p)#(q’,p’). Now we will
+ NqpT—q—p+ Mg —pT-q,p)SiNA] maximally simplify the bra vecto0|( . . .) and the ket vec-

tor (...)|0), which are present in the expressith8) for
T, (h), “transferring” the corresponding operators through
= I Tia.p), (6.5  the vacuum state.
osg.psm Now, we will consider in some detail the case correspond-
ing to the even number of fermiona £= + 1) which means
+_ t T t the choice of the antiperiodic boundary conditids3). In
T2 exp{ 2K20<%@r [(Eopbapt &0, -pa.-p+ E-apé-ap the end of the paper vr\)/e will shortly cor):sider the case of the
T + T T T odd states Xg=—1) to which correspond the periodic
&g -pE-q-p)COPF(E-q—péqptEq—pé-qp boundary condition6.4). First, let us note that the follow-
ing equality holds:
+&qp€-q,-ptE-qpée—p)Sinp]

toe t
% fquqp_% TapTap- (6.9
= T5(q,p), 6.6
Oég<w 2(a.p) €6 Further, it is obvious that for fixedq(p) the quantities
T,(q,p) andT;(q,p) T, (q,p) are represented by the ma-
f_expl S [a(hg)(y to ot ) trices of the size 18 16, each of which is considered in its
h o=qp=mw A A7=q,~pa,p ™ M=apa.-p own space of stateB; andP,,, respectively. After introduc-
tion of the bases, each of which is built of 16 functions:
= * _ S
+<I>(h)] 0<q11<w Tn (@), €9 Po=[0)¢,  Dgp=E&qpPo,
_ .t T
where a(h,q) =tanlt h(1+cogj)/sing. g -pap=&-q-ptapPo - - - (6.10

In the formulas(6.5—(6.7) the upper sign(+) corre-
sponds to the case of even states, for which one should omit
the term®(h) in the formula(6.7), and the lower sigr{—) v _ ot t (6.19)
corresponds to the case of odd states with respect to the ~Q-pia.p™ 7-q,—pTap0r - - '
operator of the total number of particleS)( The function where®, and¥ are the functions of Fermi vacuu¢which,
®(h) is of arbitrary complicated form and we will not write as was mentioned above, we denotediy= ¥ ,=|0)), we

Wo=[0),, Wgqp= ”;p\PO'
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obtain after a sequence of transformations the expression forer " N : "
the statistical sunz, (h) in the case of the even states: Ty (h)=ex o<%<w B (7 g, p7gpt 7-q,p%q,-p) |
(6.13
z*<h>=<2cosm>NM( I1 A2<q,h>)( 11 A2<p>) =
2 0<q,p<m ! 0<q,p<m 2 T2+:ex O<%< BZ(p)(fq,péfq,fp‘l'gfq,p‘fq,fp) )
(O[T T{ (]0), (6.12 (6.14
and the quantities\;(q,h), ... ,B,(p) are defined by the
where formulas

A(q,h)=coshX;—sinhX,coq+ a(h)sinhXsinq,

. 1+cog
A,(p)=coshX,—sinhX,cop, a(h)=tantth sing " (6.15
a(h)[coshX+ sinhZ ;cosy]+ sinh XK ;sing sinhZX,sinp
Bi(q)= . . Bap)=—
Ai(q,h) Az(p)
|
Analogously, we can, after a sequence of transformations, N
similar to those given above, get the following expression of V; (h/2) =ex O<E< Do(p,h/2)(&q pé—q,-p
the statistical sum understood in the fo(®37) symmetrical ap=m
with respect to the parameter of the external magnetic field
h: +§—q,p§q,—p)}- (61&
h NM
Z; (h)=| 2 cosR —) IT cia|| II cip)| andthe quantitie€,(q,h/2), ... Do(p,hi2) are defined by
2 0<gp<w 0<q,p<m
the formulas
x(0|V5 (h/2)V7 (h/2)|0), (6.16
where

C41(q,h/2)=coshX; —sinhX ;coq+ a(h,q)sinhX;sinq,

— t t
VI(h/Z)—eXL{O<%<ﬁ Dl(qahlz)(nfq,fpﬂq,p

C,(p,h/2)=coshX,—sinhX,cop+ a(h,p)sinhX,sinp,
+ an,pn;pﬁ, (6.17) (6.19
|

a(h,g)[coshX;+ sinhXcogy]+ sinhX;sinq
Ci1(9,h/2) ’

Di(q,h/2)=

a(h,p)[coshX,+sinhX,cop]+ sinhX,sinp

D2(P2)= Co(p./2)

where a(h,x) =tanrf(h/2) (1+ co))/(sinx). For the purpose In principle, one could now expand the vacuum matrix
of derivation of the expressiori6.16—(6.19 we applied the element in Eq(6.12) or in Eg.(6.16) into a sum of vacuum
fact for the even states the operatds in Eq. (5.37) gives Matrix elements of the type
vanishing contribution to the statistical sufg (h). We gave oot T

i + <O|§q,p§7q,7p N—q',-p' Tq'p’ |0>,
here two representation$.12 and (6.16 for Z; (h), be-
cause as can be shown they both can be applied in the graplerive appropriate commutation relations for thand 7'
theory[15] as we mentioned above. operators, and, finally, sum up the series. Nevertheless, in
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'!:__I"' L gjm o ch=5 > 2By(a)sinia),
o<q<m

o - ‘n+1m-1 n¥l,m+l

o el S Ve

n+2,m-3~3 1 .
o A=, 2 2BaApsinkp), (622

S m amet e for the “nonsymmetric” case, where the quantities
a1 med nimi EI - o am mmi2 Bi(q), ...,Dy(p) are defined above by Eq$6.15 and

: S 7 (6.19. Here we used in both cases the same notamﬁgl,

and further we continue with this convention. As can be seen
from Egs.(6.13 and(6.14 and Egs.(6.17) and (6.18), the
structure of the operatof®; , in the “coordinate” represen-

’ n+1,m n+l,|i\+l ’

n+2,m-3  niZm

nts,md ptSmi 0 ardms i+, m+ tation is the same as in the ca&20. The only change
Ty g concerns the weight factorsi(l) —c(l) and b(k)—d(k).
The whole procedure used above corresponds to the renor-
n milmi2mis, e v malization of the interaction constants in the former expres-
n . . . sion (5.31) for the statistical sum. We plan to explore this
[:m . . m - topic more thoroughly in future. Moreover, here appears also
42 . . . a delicate problem of the boundary conditions, connected
e e with the expression§6.20. The discussion of this problem
® 0 we also postpone. Here we mention only that in the thermo-

dynamic limit we can neglect the boundary effects. On the
FIG. 1. Examples of some graph@ a self-avoiding walk; Other hand, in the situation at hand it is much easier and
(b)—(f) Hamilton cycles on a rectangulak < M) graph with equal More convenient to consider the diagram representation for

numbers of summits and edgesith varying length of steps the vacuum matrix elemenf0|V; V7|0) in the *“coordi-
nate” representation than in the “momentum” one, which

practice we believe this task seems to be extremely difficul we denote here bg, i.e.,

Therefore we will proceed the other way. Namely, we will

come back to the “coordinate” representation, i.e., to ¢he S=(0|V; V;|0)=(0|G|0). (6.23
and B operators. Then the operatoTiz, Egs. (6.13 and

(6.14), or Vy,, Egs.(6.17) and(6.18 are expressed as fol- B. The diagram representation for S

lows: Our aim now is to calculate the vacuum matrix elem@nt

Eq. (6.23, for the sum of products of Fermi creation and
annihilation operators. The opera@rentering Eq(6.23 is
M- a polynomial in the variablea(l), b(k), «,m,, and ,BIm.
a(h) BamBn+1,m| Since G enters in the Eq(6.23 expectation value form
(0|G|0), not all terms in the polynomial give a different
from zero contribution to the matrix eleme8t Expanding
G and substituting the expansion into E§.23), the quantity
S can be represented in the form of the sum of the vacuum
, (6.20  matrix elements,S,, whereS, is the vacuum matrix ele-
ment for theth term of the polynomialG. As it follows
from Eq. (6.20, all terms of the polynomiaG are products
of various paird(k) an, m+kanm anda(l) gt .81, 1, which
wherea(l) andb(k) are given by we will call below a pairs andg pairs. Obviously, all the
terms in the polynomials with nonequal numbers of the
and B pairs give vanishing contribution. Moreover, not all
terms in the polynomia with equal numbers of the and
E _ B pairs will give nonvanishing contribution t8. Namely,

- 2D4(g)sin(lq), the nonzero contribution t8 will give only these terms with
equal numbers of the and 8 pairs, in which each annihila-
tion operatore,, is paired with the corresponding creation
operator,BI,m, with identical indicegn=n’, m=m’). In the

1 . opposite case this term obviously gives no contributiof.to
b(k)= M o<%<7 2D,(p)sin(kp), (6.2 In this way we arrive at a diagrammatic representation by
noticing that to each vacuum matrix eleme®f we can
uniquely assign a set of linébnks), connecting some of the
sites of the lattice. For example, to the graphs in Figa-1
for the “symmetric” case, and by 1(d) correspond the following matrix elements:

IM=

N—n
Vf=ex;{ >

n=1 |=1

1

m

N M

M
kE b(k) A m+k&nm

=1

| 1
a( )_ N o<qg<
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a(2)b(3)(0tn m+ 3tnmBh m+3Bn+2m+30) (),
a%(1)a(2)b*(1)b(2)(0] an m+ 1@nm@n+ 1m+1%n+ 1m-1%n+ 2m%n+2m-1
X Bhs 1m-1Bms 2m-1BhmBhs 2mBh ms 1Bm 1m+110) (D), (6.24
az(l)a2(4)b2(1)b2(2)<0|an,m+1anman+1,m+1an+1,man+1,m—2an+1,m—4a’n+5,m—2a’n+5,m—4:gl+1,m—4ﬁl+5,m—4
X B 1m- 2B+ 5m-2BhmBas 1mBhms 18hs 1mr110)  (©),

a%(2)a(4)b(2)b(3)b(5)x 0| X m+2%nmEn+2m¥n+2m-3%n+4m+2%n+4m-3

XIBE+2,m—3:8$+4,m—3ﬁlmﬁl+2,m:8l,m+2:8l+4,m+2|0> (d).

As one can see from the formulé&.20 and(6.24), to each intersections in the sites of the latticaVe can check by
horizontal line of the “length” k corresponds the factor direct computation, using the commutation relatiéshd 7)—
b(k). Also, to each vertical line of the “length’l corre- (5.19 for the @ and B operators, that, for example, the
sponds the factaa(l). Thea(l) andb(k) are defined by the graphs from Figs. (b)—1(d) contribute with the+ sign.
expression$6.22 for the nonsymmetric case. As was shown Other graphs can contribute with the sign as well as, for
above, a nonzero contribution ® gives only these matrix example, the graph in Fig.(d). Commutation relations for
elementsS,, which do not contain equal numbers of the the a and 3 operators5.17)—(5.19 are illustrated in an ap-
andg pairs. Moreover, the necessary condition for a nonzergealing way in Fig. 2, where the distinguished operaigy,
contribution is the annihilation operatar,, pair with the  (asterisk¥ for the fixed site im) commutes with the3 op-
corresponding creation operatof . Geometrically this erators in the sitesn(m’), denoted by the cross. For all
condition means that from the whole family of possible others sites ther and 8 operators anticommute. As a result
graphs only those for which in each site meet under “rightthe contribution from each particular graph splits into a prod-
angle” only zero or two lineglinks) give a nonzero contri- uct of contributions from the simple loops. The contribution
bution toS. In other words, the graphs in any site of which from a simple loop withs horizontal ands vertical links is
meet two horizontal or two vertical lines are forbidden. Theequal to

simplest examples of such graphs are shown in Figs—-1

1(e). As a result all graphs giving nonvanishing contribution °

to S should be closed. Moreover, in each site of the graphs Cs=(i1)_H a(lj)b(k;). (6.27)
self—intersegr:tions of lines(links) are forbidden, since =1

(nm?=(B!)?=0. From the point of view of the graph . :

theory to the closed graphs described above correspond no-rl;h e expression fo8, Eq. (.29, is now of the form
oriented Hamilton cycleswith valency of sites§=0,2) on

the sim_ple rectangular Iattic[a8,_23,24. S=1+> Lo+ D, Lyt =T (z,,2,,y),
In this way the vacuum matrix eleme8t Eq. (6.23), can {s {sh{a}
be represented in the form (6.28
S=>, S,=2, [all closed graphs (6.25 m
v .. ... X ox o x  x
where in the calculations every multiple-connected graph is xoxoox X
counted as onffor example, the graph in Fig.(d)]. Every x X ox 0 X
closed graph gives the contribution equal to x X x X
S ¢ . . . . X X X X
am
(il)Hl a(lj)b(k), (6.26 n .o
= x X X X
wheres is the number of the horizontal links, which is equal x x  x X
to the vertical links. Further, applying the connection be- x X X X
tween thea and B operators, Eqgs(5.19—(5.19, and the «  x  x X
Wick theorem([21,22], one can show that any vacuum matrix « x  x  x

element giving nonzero contribution into the susn Eq.

(6.25, can be split into a product of the matrix elements,

corresponding to the connected parts of the graghich we FIG. 2. “Geometry” of transposition relations faxr and 8 op-
will call below for brevity the simple loops without self- erators:*, o operator;x, 38 operator.
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the nonoriented Hamilton cycles on the square lattice
[18,24). The second difference is that tleand B links in
p . . F . Eqg. (6.28 can connect not only the nearest sites of the lat-
tice. This results in the appearance of dependence of the
o . weight factorsa(l;) andb(k;) on the distancek andk be-
tween the sites of the lattice in the vertical and the horizontal
direction, respectively. As we mentioned above, the problem
of calculation of the sunt6.28 can be called in the language
of the graph theory18] the problem of summation over the
Hamilton cycles(simple cycley on the rectangular lattice
with NX M sites with varying “length” of the edges in the
horizontal and in the vertical directions, respectively. Simul-
taneously, the problem of the sui®.29 is equivalent to the
problem of summation over all possible Euler cycles, de-
scribed above, of the typeS&4) on the same lattice. As is
FIG. 3. The simplest example of a grafffuler cyclesgivinga  known [18], there is a close correspondence between the
contribution to the sum over stat&%K,,Ky). Euler and the Hamilton graphs. For some types of Euler
) graphs one can consider instead the corresponding Hamilton
where a(l) and b(k;) are functions ofz;=tantK;, z,  graphs. The reversed statement is not trug15 is shown
=tantK;, andyztan#(h/Z) for the symmetric case, and  one more example of the nontrivial connection between the
=tanif h in the case asymmetric with respect to the paramgenerating functions for the Euler cycles and the Hamilton
eter of the external magnetic flelﬂX A contribution to Eq Cyc|es on the Simp|e rectangu|ar lattice. Name|y[]ﬁ] it
(628) giVeS besides Summation over the number Of |inS was Shown that the generating funct[BH])(zlyzz'yz 0) for
also the summation over all lengths of these lifk and  the Hamilton cycles described above is exactly equal to the
{I}, for fixeds. As can be eaSi|y seen, the summation in Eq.generating functiod_‘(e)(zl,zz) for the Euler Cyc'es &$4)

(6.28 over the lengths of the horizontdk} and vertical  for the 2D Ising modef18]. Therefore the following equality
{I} links is performed independently. In the graph theoryis trye:

[18,23 the function (6.28 is called the generating func-
tion, as we mentioned above, introducing for it the notation " NoM 5 5 5
r"(z,,z,,y), where the upper indexhj means being a I )(Zl,zz)znﬂl nﬂl (1+27)(1+25) —22:(1- 7))
member of the set of Hamilton cycles. The problem was T
reduced this way to the summation over all Hamilton cycles 27N ,. _2mm|¥2
with the varying length of the stefedge on the rectangular XCos———22(1-zg)cos——|
lattice of the type described above.

Now, let us note that the graph representatiorz gh), (6.30

described above, looks similar to the diagrammatic represen- _ Lo )
tation for the statistical sum of the 2D Ising model in the wherez, ;=tanfK; ,. Taking in £q.(6.16 the external mag

L o - netic field to be equal to zerd&0), and using the equality
Yr?r:;ig'ré%:;agaleﬁf If:ﬁlc?vr/([_ﬁg]) (t?leee,steéfi].s}igglpiggn?_c?n).be (6.30 we arrive at the classical expressif8] for the free
" ' energy on one Ising spin in the 2D Ising model. Let us note
represented in the form that the contribution of each grapltonnected or discon-
nected, which consists of a set of the Hamilton cycles, can
be represented in the form of a product of the determinants
of the incidence matriceB,,:

Z(K1.Kp)

=(2 coslK,cost,)NMY) g, stantK tanifK,,
a, w
6.29 (=)]1 dets,|,

whereg, ; denotes the number of the closed graphs consisiwhere » denotes the order of connectedness of the graph
ing of B horizontal anda vertical links. Since these links under consideration. It is equal to the number of the simple
connect the closest sites of the square lattice, to eachdink |oops creating the graph. In this way we conclude that for the
is assigned the factdweigh) tantK,, and to each link3is  computation of the statistical sum for the 2D Ising model in
assigned the factor takh. In some sites of the graph a the external magnetic field it is necessary to calculate the
simple self-intersection is possible, i.e., in one site of thegenerating functions for the Hamilton graphs on the simple
graph meet zero, two, or four lines. This corresponds to theectangular lattice of the type describped aboysee
nonoriented Euler cycles of the degré«4 [18,24. In Fig.  [15,28,29).

3 is shown one of the simplest graphs contributing to the sum

(6.29 for Z,(K1,K,). The essential difference of this case in VII. LIMITING CASES

comparison with the case with the fielch)( described
above, lies in the latter property, because in our case in one
site of the lattice can meet only zero or two lingsrizontal Let us briefly discuss one of the methods of reaching the
and vertical. This corresponds, as was discussed above, t@nsager solutioh29]. Setting in Egs(6.16 and(6.19 the

A. The Onsager solution
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magnetic field equal to zerchE&0), the partition function takes place only in the case of factorizable weights, £5)
Z,, Eq.(6.16), takes the form corresponding to step lengthsaandk, respectively.

Returning to our problem and using the result$2¥,33,
_ 2 2y1-NM/
Z,=2""[(1-z1)(1-2)] "WXO|T3T1|0), (7D e obtain forS, Eq.(6.28, the following expression:

wherez; ,=tanh(; ;), while operatord’y , can be written in o
the “coordinate” representation as S= ex;{ -> fr) , (7.3
=1
N M N-n '
T’l‘:exp{ Z 2 |Z z'l,BEm,BEH’m}, where this term include§ a sum over all single Ioops with
n=1m=11=1 length =2s), i.e., consisting 0§ horizontal ands vertical

N M M—m links. Each horizontal line contributes a factak&' ¢?), and
T§=exp{2 S S Za, m+kanm]_ (7.2  each vertical line a factor zZ{e'#?), where angle ¢=
n=1m=1 k=1 ’ +/2) corresponds to left or right turn. Introducing the
) ) ) , quantity W,(n,m,») sum over all possible paths with num-
The Kac-Ward solutior{30], briefly described in[31],  per of links equal to (=5, +s,) from a given initial point
contains topological considerations. Namely, for a givenn. my,ve) to a point (,m,»), where v is the auxiliary

closed graphwe consider here Euler graphs on a laftiee jhdex corresponding to four directiof$,2,3,4 on a square
factor a=exp(w/4) is added to a left turn, and a factor |iice. we get forf,

a~=exp(-inl4) to a right turn. Closed graplse., which
we want to includg are thus taken into account and forbid-
den graphs are compensated if we follow various paths over fr=or > Wi(ng.mg, o). (7.9
these graphs. Full proof of this theorem was given by Sher- fo Moo
man[32]. A similar result holds for Hamiltonian graphs on a qpe can easily get the following recursion relations for
lattice with variable length described above which will be,, (n,m, v) with a=exp(m/d):

. . . r ] ] .
shown in simple cases below. However, we will follow the
methods 027,33 in our consideration. N

First of all let us mention that some of the Hamiltonian W, 1(n,m1)=0+a 1> ZiW,(n—1,m,2)+0

loops[e.g., Fig. 1e)] contribute with a minug—) sign in =1
formula (6.28 for S. Namely, straightforward verification, N
with the help of commutation relation&.17 and (5.18 +a> ZW(n+1,m4),
shows that each doubly intersecting link of the one shown in =1
Fig. 1(e) contributes a minus sign to an overall sign of a
simple loop, Eq.6.27), for all admissible diagrams. At the
same time each “simple double link” of the type shown in Wr+1(n7m,2)=a§_: Z5W,(n,m—Kk,1)+0
Fig. 1(f) contributes+ sign to the overall sign of a simple K=t
loop, Eg.(6.27). All other simple loops without “double M
links” of those shown in Figs. (b)—1(d) come with a plus +a_12 zlgwr(n,mvL k,3)+0,
(+) sign in the sun(6.28. (Let us note that there is a one to k=1 (7.5
one correspondence between Euler graphs on a lattice and
Hamiltonian graphs with variable step without “double
links,” the Hamiltonian graph may contain one, two, or
more simple loops. In order to establish this correspondence
it is necessary to select in the Euler graph all intermediate

M

N
W, 1(n,m3)=0+a>, Z,W,(n—1,m,2)+0
=1

N

vertices together with intersecting horizontal and vertical ta 121 z'lwr(n+l,m,4),
links of the Euler graph.
It is easy to understand now, that if in express{6r28 M
for S all simple loops are taken with & sign, all left (and W, (nma)=a"1> ZXW,(n,m—k,1)+0
right) turns in a simple loop give a factag=exp(i 7/4) k=1
[a l=exp(imn/4)], then the problem of calculating the sum M
for S, Eq.(6.28), is in fact reduced to a “random walk” on k
a lattice with variable step27,31,33. In fact, with such a +a|<§=:1 2Wi(n.m+k,3)+0.

way of following simple loops all loops with “double links”

cancelle.g., loops in Figs. (&) and Xd)], as it should be. In  The meaning of recursion relatiofis.5) is evident. Since the
this way one can follow all the loops with “double links” point (n,m,1) can be reached frorm(,m,2) and @",m,4);
and verify that they cancel each other. Moreover, one cane., from above and from beloydirection “1” was chosen
check, using various examples, following the same reasonintp be “right”), wheren’=n—1I, n"=n+Il, and| ranges,

as given in27,31,33 that if we follow various paths over all strictly speaking, from 1 td&N— 1. However, for largeN the
Hamiltonian loops with variable step without “double link” summation ovet can be extended tN, which was done in
(including relevant weights anda ! at each turithen all  expression(7.5), because in the thermodynamic limit these
the allowed diagrams will cancel. One should stress here thdtoundary conditions do not play a role. Hamiltonian struc-
such full cancellation of forbidden diagrams in every orderture of simple loops is evident in the structure of recursion



56 LENZ-ISING-ONSAGER PROBLEM IN AN EXTERNA . .. 3847

relations (7.5), which should be compared to the case ofTaking into account Eqg7.4) and(3.6) we get forS, Eq.
Euler graphg31,33. Writing the relations(7.5) in matrix  (7.3), the following relation:
form

s=]] Vi—x,, (7.9
W, (nmp)= > A(n,m,z|n’,m’ v )W,(n’,m’,v"), i
n,m v
(7.6)  where \; is the eigenvalue of the matrix(n,m,v) (i
=1.2,..., MNM). The matrixA(n,m,») can be easily di-

one can easily see that the following relation holds: i i . .
y 9 agonalized over indicesx(m) with the help of Fourier trans-

formation:
TrA™= > W, (ng,Mg, 7o), (7.7
Ng,Mg,vg N,M
and also Wr(n,m,,,):q%‘;o @iNINa+@TIMIMPY (g b 1),
fm e TrAT= DN (7.9 o
ro2r 2r 5 ' Inserting Eq.(7.10 into Eq.(7.5), for fixed (g,p) we get
|
- N N -
0 a Yy Zied 0 aY Z '
=1 I=1
M M
a, Ko kP 0 a 1Y, ZKwkP 0
k=1 k=1
A(9,p.v[q,p,v")= N N : (7.11
0 a> zye ' 0 atY 2l
=1 I=1
M M
a 'Y o kP 0 aY, ZKo*? 0
L k=1 k=1 -
wherea=exp(n/4), e=exp(2mi/N), o=exp(27i/M).
It is evident that for fixed ¢, p) it suffices to calculate the determinant of thex(4) matrix:
4
[1 (1-))=Dets,, - A,.,)=A(a,p), (7.12
j=
and after simple calculations féx(q,p), Eq. (7.12, we get the following formula:
A _(1+z§)(1+z§)—221(1—zg)cos(zwq/N)—222(1—z§)cos(2wp/|v|) -
(@.p)= [1—22z,coq2mq/N)+z5][1—22,c08 27p/ M) + 25] ' (713

In Eq. (7.13 we have neglected the terms proportionatfoandzy' , since for largeN andM, z}'~0 andz}'~0, for z, ,<1.
Finally for asymptotically largeN,M for S, Eq. (7.9), with the help of Eq(7.13 we get

N,M N,M

(1+z§)(1+z§)—221(1—z§)cos(277q/|\|)—222(1—z§)cos{277p/|v|)r’2
s=[] vi-x= 1l A"(q,p)= :
T Vi-x=I1 Avap)= II

=0 [1—2z,c042mq/N)+2Z5][1—2Z,c08 27p/M ) + 23]
(7.14

Of course, for asymptotically larg®l,M the expression M 2mp
(7.14 goes to expressiof6.30, because of the following H 1—222cos—+z§ =1,
relations: p=0 N

for (N,M—<=), z; ,<1. Finally, using Eq(6.23 and insert-
N 5 ing Eq. (7.14 into formula(7.1), for free energy per Ising
H 1—227,c08 4 +Zi =1, spin in the 'thermodynamic limit we ggt the well known On-
q=0 N sager solutiorf3]. The method of finding the Onsager solu-
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tion, given in this paper, disregarding its complications, al- S=T"(z,,y)

lows for analytical study of the Ising-Onsager problem in

external magnetic field in several limiting cases in two and _ 2 _ _ 2
three dimensions. The proposed method of receiving the On- ‘o<ﬂ<w [1+25122;y = 22,(1~y)cod p) I
sager solution, as well as previously known graphical meth-

ods, works only for case@@(l)=2,, b(k)=2z5, I(K) (7.18

=1,2,...). It can be shown that all these methods are noffhe above formula may be used to obtain low-temperature
applicable if factorsa(l) andb(k) have different functional asymptotic solution for the free ener§yp(h) per one Ising
structure. Anyhow, contrary to all previously derived meth-spin in the thermodynamic limits. Note that the condition
ods (graphical and soonthe presented method allows, in [tanith*/(1—2)?]—1, together with Eq(7.15), is equivalent
such or another approximation, for accounting external magto [exp(—2K,)(1—tantth)—0]. For given J,;=const, H

netic fieldH. =const the above formulated condition is fulfilled for tem-
perature ared, whenh~ e, e<1. For that reason, if, for
B. Low-temperature asymptotic for F ,p(h) instance, [1—tantth*/(1-7)’]~¢, then a(l)=tanith*/(1

. _ o _ —Z)?2+~¢z'. Consequently in this case the result
The aim of this section is to consider the free energy Pef7 19 may be applied. To prove it let us consider Eg.15
one Ising spin in the external magnetic field for some Iimitfor B,(q,h), expressed by renormalized parameters
cases. For that reason the parametdfs(h) are to be (h* K*l)_ Y
renormalized in the following wayK; ,=0): A

tant?h* sing/(1— cosy) + 2z} sing
1-2z¥coq+2z:°

SiNhX3 = B1 AsinhX, f 1—tant?(h/2)]}, Bi(qg,h)=

(7.19

Cosh 2K ) = B1,4 COShX o+ tanif(h/2)sinhXKy ), where zj =tantK} , andh* and K} connected withh and

(7.1 K, as was shown in Eq7.15. Moreover, due to identity
z; z,(1—tanith)

=[1+2 tanif(h/2)sinhX ; £2X12]712 -
Aol (W2 1274 1+z5%  1+2zitanfh+22’

B1,£XN(2K 1 5) introducing a small parameter {ltanth)~¢, e<1, and de-

*
tanﬁhlZ-tanﬁ(h/Z) COSHKI,z ' velopingB1(q,h) into series along (z} ~&), we obtain

(tantth* + 227 )sing
+
1—cog

2

The above presented formulas are adequate for the symmetri- B.(q,h)= ~g”°.

cal case. For the asymmetric case it is sufficient to substitute,
for instanceK3 —K;, h3 —0. In short, in this case only the - g pstituting the last expression to £6.22 we come to the
parameteK; and the fieldh are subjects of renormalization. formula

Formulas(6.21) and (6.22 included in Eq.(6.20 take the

describinga(l) with exactness to the second power ©f
_2’1*' (~¢€?), i.e., in this approximatioa(l) does not depend dn
a(l)=zy'+tantth} a7 Finally, substituting in Eq(7.18 y for a(l) expressed by Eq.
1 (7.20 we receive in the limiting case the following expres-
sion for the free energi,p(h):
_ %Kk
b(k)=2z5 *+tant?h} ﬁ (7.1 — BF5p(h) ~In(2 costK* costK ,costh)
4
1 T
. + — 4+ 724 * 4 ok
for the symmetrical case and 2 fo In[1+2;+2z;(tanth* +22})
.y —22z,(1—tantth* — 2z} )copldp, (7.2

a(l)=z""'+tantth* b(k)=z§, (7.17

where h* and K} depend onh and K; according to Eq.
(7.15. Note that the derived approximatidi.21) may also
for the asymmetrical one. be applied to the case of comparably strong magnetic field

Equations(7.15—(7.17 and the way they were derived (H) for which (1-tanfh)~e, e<1(T=cons).
point to the possibility of obtaining series of asymptotics for

free energy per one Ising spin for 2D Ising model in the C. High-temperature approximation
external magnetic fieldH). In paper{15] it has been shown In the range of high temperature we imposh {/kgT
that vacuum matrix elemer8=(0|V;V;|0), appearing in  ~¢), <1 (J, ,=const,H=cons}, i.e., z; ,=tanhK, ,~&.

Eq. (6.16 for Z; (h), for the case(a(l)=y, b(k)=z'§) is  In this approximation the bra vectdO|T,, expressed in
equal to terms of @ operators by Eq(5.45, can be written as
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N M In this case we can automatically derive the expression for
(0|T22<0|exp( 2,2 > Bume1Bam| the free energy, substituting in E€7.14) z, , for z3 ,:
ik m — BF5(h—0)~In2+ 2In(costh/2)

i.e., expressed in terms @f operators, multiplying all phase 1 o
coefficientse,m, Eq.(5.15, by bra vector0|. It allows for e j j In[ coshX* coshX3
diagonalization of the operatdr=T,T Ty in Eq. (6.1) and 27 Jo Jo
calculation of the vacuum matrix eleme@|T|0). We will
not consider the expressions for the free energy, as the above
mentioned approximation seems to be a crude approximatiowhere coshg’, and sinhK7 , are defined by Eqs7.15.

—sinhX? cogy—sinhX3 cospldqdp,

and is not of special interest. This is the Ieéding asymptbtic term and the latter for (
=0) given Onsager solution. The procedure is equivalent to
VIIl. CONCLUSIONS considering the asymptotically vanishing magnetic fielih

the zero-order approximation, which in the author’s opinion
The case of infinitely small external magnetic field is veryis worth analyzing.

interesting(h~e¢, e<1, T=cons}). Because in Eq96.15 The above presented approach to the Lenz-Ising-Onsager
and(7.15 the magnetic fielch appears in tarfth function,  problem, on the example of 1D and 2D Ising model in the
the computations should be carried out up to the second terexternal magnetic field may be extended on the 3D Ising
(£?) inclusive. The presented approach allows for respectivénodel in the external magnetic field for the purpose of ob-
calculations, nevertheless they are long and complicatetfining the low-temperature approximation. All calculations
enough to present them in another paper. We should onlre then, in fact, the same as the ones leading t(’ERD,
like to note here a case connected with calculations of thépPart from details connected with dimension of the consid-
free energy for the external magnetic fiettl asymptotic ered system. The obtained results will be a subject of a future
tending to zero, i.e., fulfiling the condition(h—o0, Paper.
N,M—o). Neglecting in Eq(7.16 for a(l) andb(k) terms

proportional to tanhh} ,~tantfh/2 for a(l) and b(k) we ACKNOWLEDGMENTS
obtain the following asymptotic expressions: | am grateful to H. Makaruk, R. Owczarek, and A. Sna-
.l ok kowska for their assistance in preparation of the final form of
a(|)~Zl , b(k)~22 (h—)o, T=C0nSD. this paper.
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