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Lenz-Ising-Onsager problem in an external field as a soluble problem of many fermions

Martin S. Kochman´ski*
Institute of Physics, Pedagogical University, T. Rejtana 16 A, 35-310 Rzeszo´w, Poland
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In this paper an approach to solving the two-~2D! and three-dimensional Ising models in an external
magnetic fieldHÞ0 is developed. The general formalism for the approach to the problem is presented for the
example of the 2D Ising model in the external magnetic field. The paper presents a method obtaining the
Onsager solution and computations of asymptotic forms of low-temperature free energy for the 2D Ising model
in the external magnetic field (H). The free energy in the limiting case of the magnetic field tending to zero
~H→0, N, M→`! at arbitrary temperature is also considered (TÞ0). @S1063-651X~97!09709-2#

PACS number~s!: 05.50.1q
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I. INTRODUCTION

We will briefly describe the well known model of
‘‘magnetic’’ variety of spins situated on the vertices of
crystalline lattice. The spin atk can be ‘‘up’’ (sk51) or
‘‘down’’ ( sk521). A microscopic state of the system
characterized by orientations of all the spins. EnergyE$s% of
the microscopic state$s% is composed of two contributions
one from the exchange interactions of the spins and
scribed by the interaction constantJkl , and the second from
the interaction of the spins with the external magnetic fi
(H):

E$s%52(
kl

Jklsks l2H(
k

sk , ~1.1!

where summation is taken over all sites of the lattice. T
key problem is calculation of the statistical sum:

Z5(
$sk%

exp~2bE$s%!, b5
1

kBT
, ~1.2!

whereT denotes temperature andkB the Boltzmann constant
The model described above was introduced by Lenz

1920@1#, and for the one-dimensional case was investiga
by Ising in 1925@2#. An exact solution of the statistical me
chanical problem for the two-dimensional~2D! (H50) case
was found by Onsager in 1944@3#. We use the standar
name, the Ising model.

The solution given by Onsager strongly influenced
development of all of statistical physics, and in particular
the theory of phase transitions. It was shown that exact
culation of the free energy leads to evidence that thermo
namic quantities behave in the vicinity of the phase transit
in a way which is essentially different from that in the a
proximate models, such as, e.g., the mean-field theory.
result for spontaneous magnetizationM0 in the model was
presented by Onsager at the conference in Florence in 1
@4#, i.e., five years after the successful derivation of the
pression for free energy. The derivation forM0 was given by
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Yang @5#, and recently, alternative derivations have be
published both for the free energy andM0 @6–9#.

In spite of its simplicity, the Ising model is not only non
trivial in higher dimensions (d>2), but also it has rich
structure. By this we mean not only its connection with oth
models~for example, with the lattice gas models, binary a
loys, some models in quantum field theory@7,10#, etc.!, and
wide application in numerous domains of statistical physi
but also its role as a generator of new ideas and tools, wh
find their use in various areas of physics and mathema
There are sufficiently many examples of such applicatio
and we will not discuss them here~some examples can b
found in the monograph@11#, where stochastic Ising model
are considered, and also their connection with Markov p
cesses with local interactions!. We would like to stress tha
this rich structure of the Ising model has maintained a h
level of interest in this problem among physicists and ma
ematicians.

In this paper we present an approach to the Ising prob
in external magnetic field (H), with the nearest-neighbo
interaction on the square lattice. In connection with that
would like to mention the paper by Schultz, Mattis, and Li
@6#, who applied it to solve the 2D Ising model without a
external magnetic field. To calculateM0 they used a method
based on a transfer matrix using a transformation to a fer
onic representation. This deep, clear, and logically clo
paper strongly influenced the author and moved him
search for the solution of the problem in external magne
field. The fundamental idea of the approach of the author
the paper@6# is transition to a fermionic representation~the
transfer-matrix method was essentially used already in
paper by Onsager@3#!, and this can be treated in a sense a
problem of interacting fermions on the one-dimensional l
tice. In this paper we use essentially the same idea.
difference is the fermionic representation is introduced
on a 1D lattice~where theT matrix is expressed in terms o
the Fermi creation and annihilation operatorscn

† , cn , @6#!
but on a two-dimensional lattice with the doubly index
Fermi creation-annihilation operatorscnm

† , cnm @12#.

II. FORMULATION OF THE PROBLEM

Let us consider the square lattice composed ofM columns
and N rows, on the vertices of which the quantitiessnm
3831 © 1997 The American Physical Society
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3832 56MARTIN S. KOCHMAŃSKI
taking one of the two values61 are defined. We will call the
quantities the Ising ‘‘spins.’’ The multiple indexnm num-
bers the sites of the lattice, wheren numbers a row, andm
numbers a column. The Ising model with the neare
neighbor interaction in external magnetic field is given
the Hamiltonian of the form

H52J2(
nm

snmsn11,m2J1(
nm

snmsn,m112H(
nm

snm ,

~2.1!

which takes into account anisotropy in the interaction (J1,2
.0) between nearest neighbors, and also the interactio
the spinssnm with external magnetic fieldH, directed ‘‘up’’
(snm511). The essential problem is calculation of the s
tistical sum for the system:

Z~h!5 (
s11561

••• (
sNM561

exp~2bH!

5 (
~snm561!

expF (
n,m51

NM

~K2snmsn11,m1K1snmsn,m11

1hsnm!G , ~2.2!

where

K1,25bJ1,2, h5bH, b51/kBT. ~2.3!

Periodic boundary conditions are introduced for the variab
snm . Let us mention here that the statistical sum~2.2! is
symmetric with respect to the changeh→2h where h is
defined above, Eq.~2.3!.

As is known @6#, the statistical sum for the 2D Isin
model in external field (H) in the representation of secon
quantization can be written in the form

Z5Tr~V!N5Tr~V1V2Vh!N, ~2.4!

where the operatorsVi , expressed in terms of the Ferm
creation and annihilation operatorscm

† , cm are of the form

V15~2 sinh2K1!M /2expF22K1* (
m51

M

~cm
† cm2 1

2 !G ,

~2.5!

V25expH K2F (
m51

M21

~cm
† 2cm!~cm11

† 1cm11!

2~21!M̂~cM
† 2cM !~c1

†1c1!G J , ~2.6!

Vh5expH h (
m51

M

expF ip (
p51

m21

cp
†cpG ~cm

† 1cm!J , ~2.7!

whereK j ( j 51,2,) andh are defined above, Eq.~2.3!, and
M̂5(1

Mcm
† cm is the operator of the total number of particl

andK1* andK1 are connected by the following formulas:
t-

of

-

s

tanh~K1!5exp~22K1* !, or sinh2K1 sinh2K1* 51.
~2.8!

One can see that the operatorVh in the second quantization
representation, that describes interaction of the spins w
external magnetic field, has rather complicated structure.
easy to see that this operator does not commute with

operatorP̂[(21)M̂. As a result the operatorV2 also does
not have a very tractable form, i.e., it does not have
needed translational symmetry~2.6!. More exactly, although
the operatorsV1 and V2 commute with the operatorP̂, the
operatorV, Eq.~2.4!, does not commute with the operatorP̂,
i.e., @ P̂,V#2Þ0, because@ P̂,Vh#2Þ0. Therefore we canno
divide all states of the operatorV5V1V2Vh into eigenstates
of the operatorP̂ with eigenvaluesl561, and this leads to
nonconservation of the states with even and odd number
fermions~for details see@6#!. Namely, this is the fundamen
tal reason which stops solving the problem under consid
ation within this formalism. Nevertheless, the author do
not share Ziman’s pessimism@13#, which is based on some
misunderstanding, because he actually considers the
proach of the authors of the paper@6#, but in the end he
writes about limitations of the method of Onsager@3#. In fact
Onsager in his approach does not apply the field theor
language of the creation and annihilation operators as it i
the approach of the authors of the paper@6#. The method of
Onsager@3,14# really shows some limitations when one trie
to apply it to solving the 2D Ising model in external ma
netic field, or for solving the 3D Ising model. On the oth
hand, we have a completely different state of affairs than
the approach of the authors of the paper@6#, where in all its
beauty the field theoretic language of the method of sec
quantization is used. The approach of the authors of pa
@6# allows for generalizations. We intend to present one s
generalization in this and other papers devoted to the Is
problem.

Coming back to the difficulties mentioned above whi
are connected with the operatorVh , Eq. ~2.7!, it is now clear
that to overcome the troubles within the approach in@6#, one
should find an appropriate method of substituting the ope
tor Vh , Eq. ~2.7!, with another one which would be equiva
lent to the former in the sense of correct counting of t
interaction of external magnetic field with the spins of t
system. Namely, as could be easily seen, the only contr
tion to Z, Eq. ~2.4!, from the operatorVh comes, in the
representation of second quantization, from the ‘‘even’’ p
with respect to operatorscm

† , cm of the operatorVh . In prin-
ciple such a transformation could always be done. Howe
in practice this task seems to be hopeless, and the d
method of calculation of the commutators used by Onsa
for solution of the problem without external field here
simply inapplicable. We believe there is not an effecti
method to do that, at least if one stays in the space of gi
dimension~d52 for the initial variablessnm , andd51 for
the variables in the representation of second quantizationcm

†

and cm!. Nevertheless, as we will show below, there is
effective method of transforming the magnetic operatorVh ,
Eq. ~2.7!, after which the transformed operator allows for t
Fourier transform of the operatorV, Eq. ~2.4!. The idea con-
sists of formulating the problem in the space of a high
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56 3833LENZ-ISING-ONSAGER PROBLEM IN AN EXTERNAL . . .
dimension than the former one, then to pass to the repre
tation of second quantization with the operatorV, and after-
wards to perform a limit transition with respect to one of t
interaction constants, by going with it to zero. Having do
this, a possibility appears for effective rebuilding of the o
erator which is responsible for interaction of the spins of
system with external magnetic field. Below we will briefl
present this approach on an example of the one-dimensi
Ising model which is then applied to solving our basic pro
lem.

III. ONE-DIMENSIONAL ISING MODEL

In the beginning of the consideration of the 1D Isin
model we have already the complete set of formulas~2.4!–
~2.8!. To apply them to the 1D Ising model one should ta
simply K150 andN51. Then, after uncomplicated transfo
mations, taking into account the expressions~2.8!, one can
write the following formula for the statistical sum~2.4!
@Z(K150)5Z* #:

Z* 5Tr~V1* V2Vh!, ~3.1!

where the operatorsV2 andVh are defined above, Eqs.~2.6!
and ~2.7!, and the operatorV1* is of the form

V1* 5 )
m51

M

@11~21!cm
† cm#. ~3.2!

Introducing in an appropriate manner the basis in the r
resentation of occupation numbers@~finite-dimensional Fock
space!: u0& is the vacuum state,cmu0&50; cm

† u0& is a one-
particle state (m51,2,3, . . . ), etc.#, and calculating the trace
in Eq. ~3.1! we get

Z* 5 (
all ~ l !

^ l u~V1* V2Vh!u l &52M^0u~V2Vh!u0&, ~3.3!

where on the left hand side of Eq.~3.3! the summation is
over all statesu l &. It is easy to see that all the matrix ele
ments^ l u(...)u l & in Eq. ~3.3! are equal to zero thanks to th

phase factors (21)cm
† cm entering the operatorV1* , with the

exception of the vacuum matrix element^0u~ . . . !u0&, for this
matrix element contribution from the operator~3.2! is equal
simply to 2M. From this we obtain the right hand side of th
equality ~3.3!.

Let us mention now that the operatorsVh , Eq. ~2.7!, can
be represented in the form

Vh5coshM~h! )
m51

M

@11cm~cm
† 1cm!tanhh#, ~3.4!

where the phase factorcm is defined in an obvious way, Eq
~2.7!, and we applied the identity

exp~rt !5cosht1r sinht, r251.

Now, ‘‘dragging’’ the operatorVh , Eq.~3.4!, through the ket
vector u0&, after a number of transformations, we obtain t
following representation forVhu0&:
n-

-
e

al
-

-

Vhu0&5coshM~h! )
m51

M

eacm
†
u0&, a[tanh~h!. ~3.5!

Deriving the formula~3.5! we dragged all phase factorscm
entering the operatorVh through the vacuum stateu0& and
omitted the annihilation operatorscm , becausecmu0&50.
We will omit below, for brevity, the ket vectoru0&. This
should not lead to misunderstandings. Further we note
the operatorscm

† and ck
† commute with the commutato

@cm
† ,ck

†#52cm
† ck

† . As a result, using the Hausdorff-Bake
formula (a,b5const),

exp~ax!exp~by!5exp$ax1by1~ab/2!@x,y#%,
~3.6!

after application of this formula~3.6! M21 times to the
operator~3.5!, this operator can be represented in the for

Vh5coshM~h!expFa (
m51

M

cm
† GexpFa2 (

m51

M

(
p51

M2m

cm
† cm1p

† G ,

~3.7!

wherea is defined above, Eq.~3.5!. Since all terms in the
operatorV2 , Eq.~2.6!, contain bilinear products of the Ferm
operators, and the following equality is satisfied:

expS a (
m51

M

cm
† D 511a (

m51

M

cm
† ,

it is easy to see that in the pairings^0u~ . . . !u0& the compo-
nents linear incm

† give null contribution. As a result, we ca
write the following expression (Vh→Vh* ) for the operator
Vh , Eq. ~3.7!:

Vh* 5coshM~h!expFa2 (
m51

M

(
p51

M2m

cm
† cm1p

† G . ~3.8!

Now one can easily see that the operatorP̂5(21)M̂ (M̂
5(m51

M cm
† cm) commutes with the operatorsV2 and Vh* ,

and, as a consequence, the states with even or odd num
of fermions are conserved. Hence the statistical sumZ* , Eq.
~3.3!, can be represented in the form

Z* 52M^0u~V2
6Vh* !u0&, ~3.9!

where

V2
65expFK2 (

m51

M

~cm
† 2cm!~cm11

† 1cm11!G , ~3.10!

and the1 sign in V2
1 corresponds to the even states,

which are assigned the antiperiodic boundary conditions
the 2 sign to the odd states, to which are assigned the p
odic boundary conditions.

Passing in a standard way to the momentum represe
tion

cm5
exp~2 ip/4!

AM
(

q
eiqmhq ,
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3834 56MARTIN S. KOCHMAŃSKI
we obtain after some simple transformations onZ* , Eq.
~3.9!, the expression

Z* 5@2 cosh~h!#M^0uS )
0<q<p

V2qVhq* D u0&, ~3.11!

where

V2q5exp$2K2@~hq
†hq1h2q

† h21!cosq

1~hqh2q1h2q
† hq

†!sinq#%,

Vhq* 5expFa2S 11cosq

sinq
h2q

† hq
†1 f ~q!1 f ~2q! D G ,

in which the termsf (6q! in the expression forVhq* ,

f ~q![2
11e2 iq

2 sinq
h0

†hq
† ,

and in the case of antiperiodic boundary conditions should
omitted.

Finally, calculating the vacuum matrix element for fixe
q, after some uncomplicated transformations, we get forZ* ,
Eq. ~3.11!, in the case of even states the expression (Z1* )

Z1* 5@2 cosh~h!#M )
0,q,p

@cosh2K22sinh2K2cosq

1a2sinh2K2~11cosq!#

5@2 cosh~h!coshK2#M )
m51

M F11z2
212z2y

22z2~12y!cosS p~2m21!

M D G1/2

, ~3.12!

where z2[tanhK2 and y[a25tanh2h. Obviously, for N
noninteracting Ising models in external magnetic field
statistical sumW(h) is equal to theNth power of the expres
sion ~3.12!, i.e., W(h)5@Z1* #N. In the case of odd states, a
one can easily show, the following equality is satisfied:

Z2* 52Z1* . ~3.13!

Let us note here that the representation~3.12! unexpectedly
finds an application in graph theory. Namely, with help
the representation~3.12! one can calculate the generatin
function for Hamilton cycles on the simple rectangular l
tice (N3M ) @15#.

Finally, we obtain the following expression for free e
ergy per spin in the thermodynamic limit:

2bF5 lim
M→`

1

M
lnZ* 5 ln@eK2coshh

1~e2K2sinh2h1e22K2!1/2#, ~3.14!

i.e., the known classic expression@7,8#. We paid so much
attention to the 1D Ising model because we wanted to sh
in the first place the effectiveness of the proposed metho
transformation of the magnetic operatorVh , Eq. ~2.7!, to its
e

e

f

-

w
of

equivalent, Eq.~3.8!. Additionally, as we mentioned above,
bit different representation of the statistical sum for the
Ising model~3.11! finds its application in graph theory@15#.
Finally, this will help us to save time and space considera
when we discuss the 2D and 3D Ising models in exter
magnetic field.

IV. TRANSFER MATRIX

In this section we will briefly consider the representati
of the statistical sum for the 3D Ising model in external ma
netic field H, applying for this purpose the well know
transfer-matrix method@7,8,16,17#. The reader can find an
exhaustive and outstanding presentation of the method in
monographs@7,8#, where other necessary information abo
application of this method is also presented.

Let us consider a simple cubic lattice consisting ofN
rows, M columns, andK planes, in the sites of which th
‘‘spins’’ snmk are situated, which take on two values:snmk
561. The Hamiltonian for the 3D Ising model in extern
magnetic fieldH with the nearest-neighbor interaction
given in the form

H52 (
~n,m,k!51

NMK

~J1snmksn11,mk1J2snmksn,m11,k

1J3snmksnm,k111Hsnmk!, ~4.1!

where the multiple indexnmk numbers the sites of the
simple cubic lattice (N3M3K), andH is the external mag-
netic field directed ‘‘upwards’’ (snmk511). The constants
(Jj.0) take into account anisotropy of the interaction of t
Ising spins. There are periodic boundary conditions impos
as usual, on the variablessnmk. The statistical sum for the
systemZ3(h) we write in the form

Z3~h!5 (
s111561

••• (
sNMK561

e2bH

5 (
$snmk561%

expF(
nmk

~K1snmksn11,mk

1K2snmksn,m11,k1K3snmksnm,k111hsnmk!G ,
~4.2!

where the quantitiesKi andh are defined as above, Eq.~2.3!
@here and everywhere below summation overnmk ~or nm!
and also multiplication overnm will mean summation or
multiplication over the full set of integer numbers from 1
N, M , andK over each corresponding index, respectively#.

In analogy to the two-dimensional case, it is convenien
introduce the notion of thek layer, which is understood as
set of Ising spins in all sites of ak layer:

a$nm%[ak5$snmk%, with k fixed.

Then summation in Eq.~2.4! and can be conveniently ex
ecuted over the layersak , after writing the expression fo
Z3(h) in the form
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Z3~h!5(
a1

•••(
aK

expH (
k51

K F(
nm

~K1sn11,mk1K2sn,m11,k

1K3snm,k111h!snmkG J
5(

a1

•••(
ak

T
$snm2%
$snm1%T

$snm3%
$snm2%

•••T
$snm,K11%
$snmK% , ~4.3!

where

T
$snm,k11%
$snmk% 5expF(

nm
~K1sn11,mk1K2sn,m11,k

1h!snmkGexpFK3(
nm

snmksnm,k11G .
~4.4!

We will impose now periodic boundary conditions on t
indicesn, m, andk, taking

sN11,mk5s1mk , sn,M11,k5sn1k , snm,K115snm1 .
~4.5!

As a consequence of what was stated above and of the
ditions ~4.5! we can writeZ3(h) in the form

Z3~h!5Tr~T!K, ~4.6!

whereT is the transfer matrix, matrix elements of which a
described by equalities~4.4!. Matrix elements of the transfe
matrix of the layer-layer Ising model can be written in a
different form @7#, but all these representations are in fa
equivalent. According to the formula~4.4! the matrixT can
be represented in the form of a product of the matricesT1,2,3
andTh , each of the same dimension (2NM32NM):

T5T3T2T1Th , ~4.7!

where

T3,b11 ,...,bNM

a11 ,...,aNM 5)
nm

eK3anmbnm, ~4.8!

T2,b11 ,...,bNM

a11 ,...,aNM 5da11b11
,...,daNMbNM)nm

eK2anman,m11,

~4.9!

T1,b11 ,...,bNM

a11 ,...,aNM 5da11b11
,...,daNMbNM)nm

eK1anman11,m,

~4.10!

Th,b11 ,...,bNM

a11 ,...,aNM 5da11b11
,...,daNMbNM)nm

ehanm. ~4.11!

Here we introduced a new way of indexing the matrix e
ments in the expression~4.4!:

$s11k ,...,sNMk%[$a11,...,aNM%,

$s11,k11 ,...,sNM,k11%[$b11,...,bNM%,
n-

t

-

and we will continue with these assignments till the end
the paper.

Further, as is known@16#, if we introduce three sets o
2NM-dimensional matrices (tnm

x,y,z) of the form

tnm
x,y,z51^ 1^ ••• ^ tx,y,z

^ ••• ^ 1^ 1 ~4.12!

~N and M are factors!, where the Pauli matricestx,y,z are
situated in these products at thenmth place, the matrices
T1,2,3 andTh , Eqs.~4.8!–~4.11! can be rewritten in the form

T15expS K1(
nm

tnm
z tn11,m

z D ,

T25expS K2(
nm

tnm
z tn,m11

z D , ~4.13!

T35~2 sinh2K3!NM/2expS K3* (
nm

tnm
x D , ~4.14!

Th5expS h(
nm

tnm
z D , ~4.15!

where the quantitiesK3 andK3* are connected by the cond
tions of the form~2.8!, and the spin Pauli matricestnm

x,y,z , Eq.
~4.12!, commute with each other for different (nm)
Þ(n8m8), and simultaneously for each givennm these ma-
trices satisfy the standard conditions@16#. It is easy to see
that the matricesT1,2,h , Eqs. ~4.13! and ~4.15!, commute
with each other, but they do not commute with the mat
T3 , Eq. ~4.14!. Obviously, for h50 we obtain the known
formulas @7# for the matricesT1,2,3, describing the three-
dimensional Ising model on a simple cubic lattice. To t
transition to the 2D Ising model in the interaction consta
K1 andK2 corresponds takingK150 or K250 and simulta-
neously removal of summation overn (N51) or over m
(M51), respectively. In this way we obtain the standa
expressions@6,8# for the 2D Ising model in external mag
netic field, and the operatorT1 , Eq. ~4.13!, is identically
equal to the unit operatorT1[1 in the first case, andT2
[1 in the second case, respectively.

A bit different situation occurs in the case of transition
the 2D Ising model in the interaction constantK3 . In this
case one should takeK350, K51, i.e., omit summation ove
k. As a result one can arrive at the following formula for th
operatorT3 , Eq. ~4.14!:

T3* [T3~K350!5)
nm

~11tnm
x !. ~4.16!

Namely, this structure of the operatorT3* enables, finally,
effective rebuilding of the magnetic operatorTh , Eq. ~4.15!,
as was shown above on the example of the 1D Ising mo
In this case we can write the expression for the statist
sum for the 2D Ising model in the form

Z2~h!5Tr~T3* T2T1Th!, ~4.17!

where the matricesT1,2,h are defined by the formulas~4.13!
and ~4.15!, and the matrixT3* is defined by the formula
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~4.16!. The advantage of the representation of the statist
sum ~4.17! is, in the opinion of the author, in a sense ob
ous. We will write about this issue additionally below. A
will be clear from what is stated further, the matrixT2T1Th

can be conveniently written in the formTh
1/2T2T1Th

1/2, where
we applied commutativity of the factors, following from
commutativity of the matricestnm

z . The statistical sum
~4.17! we rewrite in the form

Z2~h!5Tr~T3* Th
1/2T2T1Th

1/2!, ~4.18!

where the matrixTh
1/2 is defined by the formula

Th/2[Th
1/25expF ~h/2!(

nm
tnm

z G . ~4.19!

Below we will use both the expression~4.17! and the repre-
sentation~4.18!, having in mind further applications in grap
theory @15,18#.

V. TRANSFORMATION OF T OPERATOR

A. Introduction of fermion operators

Schultz, Mattis, and Lieb@6# showed that theT matrix in
its standard representation can be expressed in terms o
second quantization Fermi operators. For this aim they
plied the known Jordan-Wigner transformations@19# which
enable expression of the Fermi operators (cm

† ,cm) for the
one-dimensional system by the Pauli operators (tm

6) @8#:

cm5expS ip (
j 51

m21

t j
1t j

2D tm
2 , cm

† 5expS ip (
j 51

m21

t j
1t j

2D tm
1 .

~5.1!

As was shown in@12#, there is an analog to the Jorda
Wigner transformations~5.1! which generalizes the former t
the two-, three-, andd-dimensional systems.

For this aim we introduce first the following variables@8#
to the formulas~4.13!–~4.16!:

tnm
6 5 1

2 ~tnm
z 6 i tnm

y !, ~5.2!

which satisfy anticommutation relations for the same site

$tnm
1 ,tnm

2 %151, ~tnm
1 !25~tnm

2 !2, ~5.3!

and commutation relations for various sites,

@tnm
6 ,tn8m8

6
#250, ~nm!Þ~n8m8!. ~5.4!

Quantitiestnm
6 are often called Pauli operators. The corr

spondences

tnm
x 522~tnm

1 tnm
2 2 1

2 !, tnm
z 5tnm

1 1tnm
2 ~5.5!

enable us to rewrite the expressions forT1,2,h andT3* , Eqs.
~4.13!–~4.16!, in the form

T15expFK1(
nm

~tnm
1 1tnm

2 !~tn11,m
1 1tn11,m

2 !G , ~5.6!
al

the
p-

-

T25expFK2(
nm

~tnm
1 1tnm

2 !~tn,m11
1 1tn,m11

2 !G , ~5.7!

Th5expFh(
nm

~tnm
1 1tnm

2 !G , ~5.8!

T3* 5)
nm

@11~122tnm
1 tnm

2 !#. ~5.9!

As was mentioned above, the Pauli operatorstnm
6 behave

as Fermi operators when considered for one site, and as B
operators when considered for different sites. In order
transform to the fermionic representation, i.e., to the Fe
operators in the whole lattice, we will introduce an analog
the Jordan-Wigner transformations~5.1!, which will enable
us to express Fermi operators (cnm

† ,cnm) by Pauli operators
tnm

6 for the two-dimensional system. Namely, there exist
the two-dimensional case two sets of such transformati
@12#, which we represent here in the form

anm
† 5expS ip (

k51

n21

(
l 51

M

tkl
1tkl

21 ip (
l 51

m21

tnl
1tnl

2 D tnm
1 ,

~5.10!

anm5expS ip (
k51

n21

(
l 51

M

tkl
1tkl

21 ip (
l 51

m21

tnl
1tnl

2 D tnm
2 ,

and

bnm
† 5expS ip(

k51

N

(
l 51

m21

tkl
1tkl

21 ip (
k51

n21

tkm
1 tkm

2 D tnm
1 ,

~5.11!

bnm5expS ip(
k51

N

(
l 51

m21

tkl
1tkl

21 ip (
k51

n21

tkm
1 tkm

2 D tnm
2 .

It is easy to show, using formulas~5.3! and ~5.4!, that the
operators (anm

† ,anm) and (bnm
† ,bnm) are Fermi operators in

the whole lattice, i.e., they satisfy anticommutation relatio
for all sites:

$anm
† ,anm%151, ~anm

† !25~anm!250,

$anm
† ,an8m8

† %15•••50, ~nm!Þ~n8m8!, ~5.12!

and analogously for theb operators. There are also invers
transformations:

tnm
1 5expF ip (

k51

n21

(
p51

M

akp
† akp1 ip (

p51

m21

anp
† anpGanm

† ,

~5.13!

etc., which can be easily proved by application of the ide
tities

expS ip(
nm

tnm
1 tnmD 5)

nm
~122tnm

1 tnm
2 !5)

nm
tnm

x ,

from which one can easily derive the equalities

tnm
1 tnm

2 5anm
† anm5bnm

† bnm . ~5.14!



f

n

-

io

io
h
ac
tio
te
on
r-

io
o
as

as
th
a
s

de
a

fo

n
e

f a
w
n

era-

osen

s
tor

ll

q.

56 3837LENZ-ISING-ONSAGER PROBLEM IN AN EXTERNAL . . .
The formulas~5.14! express conditions of local equality o
the occupation numbers fora and b fermions in one site.
Further, as it follows from Eqs.~5.10!, ~5.11!, and~5.13!, a
andb operators are connected by canonical nonlinear tra
formations:

anm
† 5exp~ ipwnm!bnm

† , anm5exp~ ipwnm!bnm ,

~5.15!

wnm5F (
k5n11

N

(
p51

m21

1 (
k51

n21

(
p5m11

M Gakp
† akp5@•••#bkp

† bkp ,

where the operatorswnm obviously commute with the opera
tors (anm

† ,anm) and (bnm
† ,bnm), i.e.,

@wnm ,anm
† #25•••5•••5@wnm ,bnm#250. ~5.16!

Commutation relations amonga and b operators are more
complicated. Namely, as one can check by direct calculat
the following commutation relations hold:

$anm
† ,bnm%15$bnm

† ,anm%15~21!wnm, ~5.17!

@anm ,bn8m8#25•••5@anm
† ,bn8m8

†
#250,

H n8<n21, m8>m11,
n8>n11, m8<m21, ~5.18!

and

$anm ,bn8m8%15•••5$anm
† ,bn8m8

† %150, ~5.19!

in all other cases, wherewnm are defined above, Eq.~5.15!.
This way we get rather specific structure of commutat
relations amonga and b operators in the lattice, althoug
this structure shows some symmetry. Here is the right pl
to compare the situation described above with the situa
we get using the second quantization method. For a sys
composed of different particles one introduces the sec
quantization operators of different kinds for different pa
ticles. The operators connected to either bosons or ferm
satisfy the standard commutation relations. As far as the
erators for different fermions are concerned, it is usually
sumed without any proof@20# that within the limits of non-
relativistic theory they could be treated formally
commuting or anticommuting. Both assumptions lead to
same results when the second quantization method is
plied. Nevertheless, in the relativistic theory, which allow
for transmutations of various particles, we should consi
creation and annihilation operators for different fermions
anticommuting. On the other hand, in our case we deal
mally with ‘‘quasiparticles’’ of thea andb types underlying
separately the Fermi statistics with commutation relatio
among particles of different types being, however, depend
on relative position of these ‘‘quasiparticles’’ in the sites o
lattice. Such a situation, as far as is known to the author,
not present in earlier works on application of the seco
quantization method.
s-
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B. The T1,2,h and T3* operators

Before writing theT operators~5.6!–~5.9! in terms of
Fermi operators, let us make a few remarks. First, the op
tor T3* , Eq. ~5.9!, can be expressed in terms ofa as well as
b operators, because of Eq.~5.14!:

T3* 5)
nm

@11~21!anm
† anm#5)

nm
@11~21!bnm

† bnm#,

~5.20!

where the basis in the Fock representation should be ch
so as to be expressed in terms of thea or b operators, re-
spectively. Second, the operatorsT1,2,h we can also expres
in terms of eithera or b operators. Nevertheless, the opera
T2 we write in terms of thea operators and the operatorT1
we write in terms of theb operators for reasons which wi
become clear later.

Now, due to Eqs.~5.10! and ~5.11! we can write the op-
eratorTh , Eq. ~5.8!, in the form

Th5expFh(
nm

unm~anm
† 1anm!G

5expFh(
nm

cnm~bnm
† 1bnm!G , ~5.21!

whereunm is defined as the first factor in Eq.~5.13!, andcnm
is defined by

cnm5expF ip(
k51

N

(
p51

m21

bkp
† bkp1 ip (

k51

n21

bkm
† bkmG .

Transformation of the operatorsT1,2 is a bit more compli-
cated. Taking into account cyclic boundary conditions~4.5!,
we will write first a sequence of equalities analogous to E
~5.14!:

tN,m
1 t1,m

1 52~21!N̂mbN,m
† b1,m

† ,

tN,m
1 t1,m

2 52~21!N̂mbN,m
† b1,m ,

~5.22!

tN,m
2 t1,m

1 5~21!N̂mbN,mb1,m
† ,

tN,m
2 t1,m

2 5~21!N̂mbN,mb1,m ,

and

tn,M
1 tn,1

1 52~21!M̂nan,M
† an,1

† ,

tn,M
1 tn,1

2 52~21!M̂nan,M
† an,1 ,

~5.23!

tn,M
2 tn,1

1 5~21!M̂nan,Man,1
† , tn,M

2 tn,1
2 5~21!M̂nan,Man,1 ,

where
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ĝn[~21!M̂n, M̂n5 (
m51

M

anm
† anm , ĝm[~21!N̂m,

N̂m5 (
n51

N

bnm
† bnm , ~5.24!

which can be obtained by using the formulas~5.10!–~5.13!.
Therefore we can write the following representations for
operatorsT1,2:

T15expH K1 (
m51

M F (
n51

N21

~bnm
† 2bnm!~bn11,m

† 1bn11,m!

2ĝm~bNm
† 2bNm!~b1,m

† 1b1,m!G J , ~5.25!

T25expH K2(
n51

N F (
m51

M21

~anm
† 2anm!~an,m11

† 1an,m11!

2ĝn~anM
† 2anM!~an,1

† 1an,1!G J . ~5.26!

Finally, let us express the operatorT2 in terms of theb
operators:

T25expH K2(
n51

N F (
m51

M21

x̂nm~bnm
† 2bnm!~bn,m11

† 1bn,m11!

2Ĝx̂nM~bnM
† 2bnM!~bn,1

† 1bn,1!G J , ~5.27!

where the operatorsĜ and x̂nm are defined by the formulas

Ĝ[expF ip(
nm

anm
† anmG5expF ip(

nm
bnm

† bnmG5~21!Ŝ,

~5.28!

x̂nm5expF ip (
k5n11

N

bkm
† bkm1 ip (

k51

n21

bk,m11
† bk,m11G ,

and we applied the relations analogous to Eq.~5.23!, but
expressed in terms of theb operators. The operatorŜ intro-
duced above, Eq.~5.28!, is the operator of the number o
particles, which is connected with the operatorsN̂ and M̂ ,
Eq. ~5.24!, by relations

Ŝ5 (
n51

N

M̂n5 (
m51

M

N̂m , Ĝ5 )
n51

N

ĝn5 )
m51

M

ĝm .

~5.29!

It is easy to see that the operatorĜ, Eq. ~5.28!, commutes
with the operatorsT1 andT2 , Eqs.~5.25!–~5.27!, but it does
not commute with the operatorTh , Eq. ~5.21!, because the
following relations are satisfied:

$Ĝ,anm
† %15•••5$Ĝ,bnm%150. ~5.30!
e

Of course, we can also express the operatorsT1 and Th in
terms of thea operators and we can write down the formul
if they are necessary.

It was shown above, Eq.~4.17!, that the statistical sum fo
the 2D Ising model in external magnetic field can be rep
sented by the trace of the operatorT, which was expressed
here by the Fermi second quantization operators. Introd
ing, as in the one-dimensional case, a basis in the occupa
numbers representation@20# for the a and b fermions
~2NM-dimensional space in the Fock representation!, and cal-
culating then appropriate matrix elements^ l uTu l &, it is easy
to see that because of multiplicative character of the oper
T3* , Eq. ~5.20!, all matrix elements, besides the vacuum m
trix element^0uTu0&, are equal to zero. For the vacuum m
trix element contribution from the operatorT3* is equal sim-
ply to 2NM, and we can writeZ2(h), Eqs.~4.17! and~4.18!,
in the form

Z2~h!52NM^0u~T2T1Th!u0&52NM^0u~Th/2T2T1Th/2!u0&,
~5.31!

where the vacuum stateu0& is defined in the standard manne

anmu0&5bnmu0&50, n~m!51,2, . . . ,N~M !,
~5.32!

and operatorsT1,2,h are defined by the formulas~5.21! and
~5.25!–~5.27!. Let us stress that the vacuum states~5.32! for
the a and b fermions can differ among themselves at mo
by a constant phase factor, which in the given case can
ways be taken to be equal to unity. However, it is no long
true in the case of multiparticle states for thea andb fermi-
ons, because in this case the essential role begins to
phase factors (21)wnm, Eq. ~5.15!. The one-particle state
are an exception for which, as can be easily found from
~5.15!, we have

anm
† u0&5~21!wnmbnm

† u0&5bnm
† u0&,

for all nm. In all other cases thea and b states will differ
from each other by their sign which depends on indicesnm
of the corresponding sites. This very fact implies the m
difficulty in the proposed approach to solving the proble
under consideration. This difficulty can be, howeve
avoided.

Let us make two remarks here. It is obvious that the r
resentation~5.31! for the statistical sumZ2(h) does not de-
pend on the kind of variables~a or b operators! with which
we introduce the basis in the representation of occupa
numbers, because equality of local occupation numb
~5.14! holds for thea andb fermions. Further, we expresse
the operatorT2 in terms of thea andb variables, Eqs.~5.26!
and ~5.27!, although we will work mainly with the expres
sion ~5.26!. The reason is that in the representation~5.27! for
T2 the operatorsx̂nm are present, Eq.~5.28!. They are phase
factors and it is difficult in practice to remove them. Th
difficulty arising from the presence of these operators is
the same kind, which was found by the authors of paper@6#,
who considered the case with external magnetic field. Sim
taneously, the representation~5.26! for T2 does not involve
the phase factors, justifying the choice. Nevertheless, the
pression~5.27! for T2 will be necessary in the analysis of th
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boundary conditions, which play an important role here.
analogous statement applies to the operatorT1 , which we
expressed in terms of thea andb variables, Eq.~5.25!, and
which also does not contain phase factors of the type ofx̂nm .
The essence of our approach lies in the structure of the tr
formations~5.10! and~5.11!, which allows for expression o
the operatorsT1,2 in the form~5.26!, which does not contain
the phase factors.

Now, we transform the magnetic operatorTh , Eq. ~5.21!,
or more exactly the ket vectorThu0&, entering the expressio
th

d

t
m

ow
s-

~5.31! for Z2(h). Exactly in the sense one should understa
the equivalence of the two operatorsTh and Th* , acting on
the vacuum stateu0&. Below we will omit u0&, as this should
not lead to misunderstandings. Analogously, we introdu
the notationTh/2

l ,r for the transformed bra vector^0uTh/2 and
the transformed ket vectorTh/2u0&, respectively, omitting
further bra and ket vectors of the vacuum state~^0u,u0&!. Con-
tinuing with considerations analogous to these, which g
us the expression~3.7! in the one-dimensional case, the o
eratorTh , Eq. ~5.21!, we represent in the form
Th5~coshh!NMexpFa(
nm

bnm
† GexpH a2F (

n,n8

N

(
m51

M

(
p51

M2m

bnm
† bn8,m1p

†
1 (

n51

N

(
k51

N2n

(
m51

M

bnm
† bn1k,m

† G J , ~5.33!

wherea[tanhh. Analogously, the operatorsTh/2
l ,r we write in the form

Th/2
l 5S cosh

h

2D NM

expFm(
nm

anmGexpH m2F (
n51

N

(
m51

M

(
p51

M2m

an,m1panm1 (
n51

N

(
k51

N2n

(
m,m8

M

an1k,m8anmG J , ~5.34!

Th/2
r 5S cosh

h

2D NM

expFm(
nm

bnm
† GexpH m2F (

n,n8

N

(
m51

M

(
p51

M2m

bnm
† bn8,m1p

†
1 (

n51

N

(
k51

N2n

(
m51

M

bnm
† bn1k,m

† G J , ~5.35!
so

the

uli

all
i

of

e

l-
wherem[tanh(h/2). The operatorsTh andTh/2
l ,r are of rather

complicated structure. However, they no longer contain
phase factors. Substituting the expressions~5.33!–~5.35! to
the equalities~5.31!, the statistical sumZ2(h) can be written
in the form

Z2~h!52NM^0u~T2T1Th* !u0&, ~5.36!

or

Z2~h!52NM^0u~Tl* T2T1Tr* 1m2ATl* T2T1Tr* B!u0&

[2NM^0u~U11U2!u0&, ~5.37!

where the operatorsU1,2 are defined in the obvious way, an
the operatorsTh* andTl ,r* are given by the formulas~5.33!–
~5.35!, in which one should omit the factors

expS a(
nm

bnm
† D , expS m(

nm
anmD , expS m(

nm
bnm

† D ,

and the operatorsA andB are of the form

A5(
nm

anm , B5(
nm

bnm
† . ~5.38!

In derivation of Eqs.~5.36! and ~5.37! we used the fact tha
the diagonal matrix elements for the product of an odd nu
ber of Fermi operators are equal to zero, and that the foll
ing equalities are true:

expFa(
nm

anm~bnm
† !G511a(

nm
anm~bnm

† !,
e

-
-

wherea is a c-valued function. One should remember al
that the operatorsT1,2, Eqs.~5.25!–~5.27!, contain only bi-
linear products of the Fermi operators. With this ends
rebuilding procedure for the magnetic operator.

C. The boundary conditions

With the aim of further simplification of the operatorsT1,2
we should consider boundary conditions for thea and b
operators, taking periodic boundary conditions for the Pa
operatorstnm

6 , Eq. ~5.2!, in both indices (nm) as a starting
point. Let us briefly discuss this problem here. First, since
terms inT1,2 andTh* contain bilinear products of the Ferm
operators, the following formulas are valid:

@Ĝ,T1#25@Ĝ,T2#25@Ĝ,Th* #250, ~5.39!

which shows that the states with even or odd number
fermions are preserved as well for thea as for theb par-
ticles. The operatorĜ, entering Eq.~5.39!, is defined above,
Eq. ~5.28!. Analogously, the following formulas are true:

@Ĝ,U1#25@Ĝ,U2#250,

where the operatorsU1,2 are defined above. However, th
operatorsĝn and ĝm , Eq. ~5.24!, do not commute with the
operatorsT5T2T1Th* or U5U11U2 , Eq. ~5.37!, and this
fact implies some difficulties. First, let us note that the fo
lowing equalities hold:

Ĝ5)
n

ĝn5)
m

ĝm , lĜ5)
n

l ĝn
5)

m
l ĝm

,

~5.40!
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where bylĜ , l ĝn
, andl ĝm

we denoted eigenvalues of th

operatorsĜ, ĝn , andĝm , equal61.
Let us consider first the case corresponding to the s

with even number of fermions (lĜ511). In this case, as
one can easily see, we should choose antiperiodic boun
conditions for theb operators with respect to the seco
indexm ~for all n!, and antiperiodic boundary conditions fo
the a operators with respect to the first indexn ~for all m!,
i.e.,

bn,M11
† 52bn,1

† , bn,M1152bn,1 ~n51,2, . . . ,N!,
~5.41!

aN11,m
† 52a1,m

† , aN11,m52a1,m ~m51,2, . . . ,M !.

Then the boundary conditions for theb operators with re-
spect to the first indexn depend onĝm , and the boundary
conditions for thea operators with respect to the seco
indexm depend onĝn . More exactly, it depends on at whic
step we fix the eigenvaluesl ĝm

and l ĝn
, respectively. The

only limitations on the choice of the eigenvalues and cor
sponding boundary conditions give equalities~5.40!. The
whole freedom in the choice of boundary conditions cons
of 2N possible boundary conditions for thea operators in
their second index, and 2M possible boundary conditions fo
the b operators in their first index. Detailed analysis sho
that we can, without losing generality, choose homogene
boundary conditions, i.e., antiperiodic boundary conditio
for the a operators in their second indexm, which corre-
sponds to (l ĝn

511) for eachn, and antiperiodic boundary

conditions for theb operators in their first indexn, which
corresponds to (l ĝm

511) for eachm, i.e.,

an,M11
† 52an,1

† , an,M1152an,1 , l ĝn
511

~n51,2, . . . ,N!,

bN11,m
† 52b1,m

† , bN11,m52b1,m , l ĝm
511

~m51,2, . . . ,M !,
~5.42!

lĜ5)
n

l ĝn
5~11!N5)

m
l ĝm

5~11!M511,

for each parity of the numbersN andM . Analogously, one
can show that in the case of the odd states (lĜ521) the
boundary conditions for thea andb operators can be written
in the form

aN11,m
† 51a1,m

† , aN11,m51a1,m ~m11,2, . . . ,M !,

an,M11
† 51an,1

† , an,M1151an,1 , l ĝn
521

~n51,2, . . . ,N!,
te

ry

-

ts

s
us
s

bN11,m
† 51b1,m

† , bN11,m51b1,m , l ĝm
521

~m51,2, . . . ,M !,
~5.43!

bn,M11
† 51bn,1

† , bn,M1151bn,1 ~n51,2,...,N!,

lĜ5)
n

l ĝn
5~21!N5)

m
l ĝm

5~21!M521,

for N andM odd. It is obvious that the constraints on pari
of N andM are not important here, because we can alw
chooseN and M in the form ~N52N811, M52M 811!,
and then go to infinity withN8 andM 8 independently.

One can show exactly that the boundary conditions for
a andb operators chosen this way are not contradictory
we take into account simultaneously the conditions of lo
equality of the occupation numbers for thea andb fermions,
Eq. ~5.14!. As a result we can write down the followin
expressions for the operatorsT1,2, Eqs.~5.25! and ~5.26!:

T1
65expFK1 (

n,m51

N,M

~bnm
† 2bnm!~bn11,m

† 1bn11,m!G ,

~5.44!

T2
65expFK2 (

n,m51

N,M

~anm
† 2anm!~an,m11

† 1an,m11!G ,

~5.45!

where the upper sign~1! corresponds to the states with eve
numbers of fermions (lĜ511), and the lower sign~2!
corresponds to the states with odd numbers of fermi
(lĜ521), with the appropriate boundary conditions, Eq
~5.41!–~5.43!. This way, the form of the operatorsT1,2 for
the even and odd states is preserved. What is changin
only the boundary conditions.

VI. THE PARTITION FUNCTION

In this section we perform all the calculations for the s
tistical sum written in the form~5.36!, and in the end of the
section we only give the results forZ2(h) written in the form
~5.37! symmetric in the magnetic operator. This can be do
almost automatically, since all calculations in the latter ca
are analogous to the ones given below.

Collecting all the results derived above, we can write t
following expression for the statistical sum~5.36!:

Z2~h!5~2 coshh!NM^0uTu0&, T[T2
6T1

6Th* , ~6.1!

where the operatorsTh* andT1,2
6 are defined by the formula

~5.33!, ~5.44!, and ~5.45!. In the formula~5.33! one should
only omit the factor exp(aSnmbnm

† ), and move the constan
factor (coshh)NM out of the expression̂0u~ . . . !u0&. Let us
recall before the diagonalization of theT operator in Eq.
~6.1!, in which the multiplicative components1,2

6 andTh* are
expressed by the Fermi operators of thea andb types, that
these operators satisfy the mixed commutative relati
~5.17!–~5.19!. As a result also their Fourier transforms w
satisfy in general rather complex commutative relations.



.

x

om

t

e

us

e
nta-
the
ny
op-

her
her
i-

h

nd-

the
c
-

-
s

56 3841LENZ-ISING-ONSAGER PROBLEM IN AN EXTERNAL . . .
A. Momentum representation

Let us pass now to the momentum representation:

anm
† 5

exp~ ip/4!

~NM!1/2 (
q,p

e2 i ~nq1mp!jqp
† ,

bnm
† 5

exp~ ip/4!

~NM!1/2 (
q,p

e2 i ~nq1mp!hqp
† , ~6.2!

where the factor exp(ip/4) was introduced for convenience
Antiperiodic boundary conditions giveeiqN521, eipM5
21, where

q~p!56
p

N~M !
, 6

3p

N~M !
, 6••• , ~6.3!

and the periodic boundary conditions giveeiqN51, eipM

51, where

q~p!50, 6
2p

N~M !
, 6

4p

N~M !
, 6••• . ~6.4!

Substituting Eq.~6.2! into Eqs.~5.33!, ~5.44!, and~5.45! we
get after straightforward transformations the following e
pressions for the operatorsT1,2

6 andTh* :

T1
65expH 2K1 (

0<q,p<p
@~hqp

† hqp1hq,2p
† hq,2p1h2qp

† h2qp

1h2q,2p
† h2q,2p!cosq1~h2q,2p

† hq,p
† 1h2q,p

† hq,2p
†

1hq,ph2q,2p1hq,2ph2q,p!sinq#J
5 )

o<q,p<p
T1

6~q,p!, ~6.5!

T2
65expH 2K2 (

0<q,p<p
@~jqp

† jqp1jq,2p
† jq,2p1j2qp

† j2qp

1j2q,2p
† j2q,2p!cosp1~j2q,2p

† jq,p
† 1jq,2p

† j2q,p
†

1jq,pj2q,2p1j2q,pjq,2p!sinp#J
5 )

0<q,p<p
T2

6~q,p!, ~6.6!

Th* 5expH (
0<q,p<p

@a~h,q!~h2q,2p
† hq,p

† 1h2q,p
† hq,2p

† !#

1F~h!J 5 )
0<q,p<p

Th
6~q,p!, ~6.7!

wherea(h,q)[tanh2 h(11cosq)/sinq.
In the formulas~6.5!–~6.7! the upper sign~1! corre-

sponds to the case of even states, for which one should
the termF(h) in the formula~6.7!, and the lower sign~2!
corresponds to the case of odd states with respect to
operator of the total number of particles (Ŝ). The function
F(h) is of arbitrary complicated form and we will not writ
-

it

he

it down here. We only mention that it plays an analogo
role to the role played by the functionf (q) in the one-
dimensional case, Eq.~3.11!. We used commutativity of the
operatorsT1,2

6 (q,p) andTh
6(q,p) for different (q,p) to write

the expressions~6.5!–~6.7!. Namely,

@T1
6~q,p!,T1

6~q8,p8!#25@T2
6~q,p!,T2

6~q8,p8!#2

5@Th
6~q,p!,Th

6~q8,p8!#250,

as can be easily verified. The statistical sum~6.1! we rewrite
now in the form

Z2
6~h!5~2 coshh!NMK 0UF )

0<q,p<p
T2

6~q,p!G
3F )

0<q,p<p
T1

6~q,p!Th
6~ ,p!GU0L , ~6.8!

where u0& is the function of the fermionic vacuum in th
space of occupation numbers in the momentum represe
tion. This function was denoted in the same way as in
‘‘coordinate’’ representation but this should not lead to a
misunderstandings. We used also commutativity of the
eratorsT1

6(q,p) and Th
6(q,p) for (q,p)Þ(q8,p8) to write

the formula~6.8!. The operators (jqp ,jqp
† ) and (hqp ,hqp

† )
satisfy the standard commutation relations. On the ot
hand, the commutation relations mixing them are of rat
complex form, in contrast to the relations in the ‘‘coord
nate’’ representation~5.17!–~5.19!. This, by the way, is the
cause of the lack of commutativity of the operatorsT2

6(q,p)
and T1

6(q,p)Th
6(q,p) for (q,p)Þ(q8,p8). Now we will

maximally simplify the bra vector̂0u~ . . . ! and the ket vec-
tor ~ . . . !u0&, which are present in the expression~6.8! for
T2

6(h), ‘‘transferring’’ the corresponding operators throug
the vacuum state.

Now, we will consider in some detail the case correspo
ing to the even number of fermions (lĜ511) which means
the choice of the antiperiodic boundary conditions~6.3!. In
the end of the paper we will shortly consider the case of
odd states (lĜ521) to which correspond the periodi
boundary conditions~6.4!. First, let us note that the follow
ing equality holds:

(
q,p

jqp
† jqp5(

q,p
hqp

† hqp . ~6.9!

Further, it is obvious that for fixed (q,p) the quantities
T2

6(q,p) and T1
6(q,p)Th

6(q,p) are represented by the ma
trices of the size 16316, each of which is considered in it
own space of statesPj andPh , respectively. After introduc-
tion of the bases, each of which is built of 16 functions:

F0[u0&j , Fq,p5jqp
† F0 ,

F2q,2p;q,p5j2q,2p
† jqp

† F0 , . . . ~6.10!

C0[u0&h , Cq,p5hqp
† C0 ,

C2q,2p;q,p5h2q,2p
† hqp

† C0 , . . . , ~6.11!

whereF0 andC0 are the functions of Fermi vacuum~which,
as was mentioned above, we denoted byF05C05u0&!, we
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obtain after a sequence of transformations the expressio
the statistical sumZ2

1(h) in the case of the even states:

Z2
1~h!5~2 coshh!NMS )

0,q,p,p
A1

2~q,h! D S )
0,q,p,p

A2
2~p! D

3^0uT̃2
1T̃1

1~h!u0&, ~6.12!

where
n
o

e

ra
for
T̃1

1~h!5expF (
0,q,p,p

B1~q!~h2q,2p
† hq,p

† 1h2q,p
† hq,2p

† !G ,
~6.13!

T̃2
15expF (

0,q,p,p
B2~p!~jq,pj2q,2p1j2q,pjq,2p!G ,

~6.14!

and the quantitiesA1(q,h), . . . ,B2(p) are defined by the
formulas
A1~q,h!5cosh2K12sinh2K1cosq1a~h!sinh2K1sinq,

A2~p!5cosh2K22sinh2K2cosp, a~h!5tanh2h
11cosq

sinq
, ~6.15!

B1~q!5
a~h!@cosh2K11sinh2K1cosq#1sinh 2K1sinq

A1~q,h!
, B2~p!5

sinh2K2sinp

A2~p!
.

Analogously, we can, after a sequence of transformatio
similar to those given above, get the following expression
the statistical sum understood in the form~5.37! symmetrical
with respect to the parameter of the external magnetic fi
h:

Z2
1~h!5S 2 cosh2

h

2D NMS )
0,q,p,p

C1
2~q! D S )

0,q,p,p
C2

2~p! D
3^0uV2

1~h/2!V1
1~h/2!u0&, ~6.16!

where

V1
1~h/2!5expF (

0,q,p,p
D1~q,h/2!~h2q,2p

† hq,p
†

1h2q,p
† hq,2p

† !G , ~6.17!
s,
f

ld

V2
1~h/2!5expF (

0,q,p,p
D2~p,h/2!~jq,pj2q,2p

1j2q,pjq,2p!G , ~6.18!

and the quantitiesC1(q,h/2), . . . ,D2(p,h/2) are defined by
the formulas

C1~q,h/2!5cosh2K12sinh2K1cosq1a~h,q!sinh2K1sinq,

C2~p,h/2!5cosh2K22sinh2K2cosp1a~h,p!sinh2K2sinp,
~6.19!
D1~q,h/2!5
a~h,q!@cosh2K11sinh2K1cosq#1sinh2K1sinq

C1~q,h/2!
,

D2~p,h/2!5
a~h,p!@cosh2K21sinh2K2cosp#1sinh2K2sinp

C2~p,h/2!
,

rix

, in
wherea(h,x)5tanh2(h/2)(11cosx)/(sinx). For the purpose
of derivation of the expressions~6.16!–~6.19! we applied the
fact for the even states the operatorU2 in Eq. ~5.37! gives
vanishing contribution to the statistical sumZ2

1(h). We gave
here two representations~6.12! and ~6.16! for Z2

1(h), be-
cause as can be shown they both can be applied in the g
theory @15# as we mentioned above.
ph

In principle, one could now expand the vacuum mat
element in Eq.~6.12! or in Eq. ~6.16! into a sum of vacuum
matrix elements of the type

^0ujq,pj2q,2p•••h2q8,2p8
† hq8,p8

† •••u0&,

derive appropriate commutation relations for thej and h†

operators, and, finally, sum up the series. Nevertheless
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practice we believe this task seems to be extremely diffic
Therefore we will proceed the other way. Namely, we w
come back to the ‘‘coordinate’’ representation, i.e., to thea
and b operators. Then the operatorsT̃1,2

1 , Eqs. ~6.13! and
~6.14!, or V1,2

1 , Eqs.~6.17! and ~6.18! are expressed as fo
lows:

V1
15expF (

n51

N

(
l 51

N2n

(
m51

M

a~ l !bnm
† bn1 l ,m

† G ,

V2
15expF (

n51

N

(
m51

M

(
k51

M2m

b~k!an,m1kanmG , ~6.20!

wherea( l ) andb(k) are given by

a~ l !5
1

N (
0,q,p

2D1~q!sin~ lq !,

b~k!5
1

M (
0,p,p

2D2~p!sin~kp!, ~6.21!

for the ‘‘symmetric’’ case, and by

FIG. 1. Examples of some graphs:~a! a self-avoiding walk;
~b!–~f! Hamilton cycles on a rectangular (N3M ) graph with equal
numbers of summits and edges~with varying length of steps!.
lt.

c~ l !5
1

N (
0,q,p

2B1~q!sin~ lq !,

d~k!5
1

M (
0,p,p

2B2~p!sin~kp!, ~6.22!

for the ‘‘nonsymmetric’’ case, where the quantitie
B1(q), . . . ,D2(p) are defined above by Eqs.~6.15! and
~6.19!. Here we used in both cases the same notationV1,2

1 ,
and further we continue with this convention. As can be se
from Eqs.~6.13! and ~6.14! and Eqs.~6.17! and ~6.18!, the
structure of the operatorsT̃1,2

1 in the ‘‘coordinate’’ represen-
tation is the same as in the case~6.20!. The only change
concerns the weight factors:a( l )→c( l ) and b(k)→d(k).
The whole procedure used above corresponds to the re
malization of the interaction constants in the former expr
sion ~5.31! for the statistical sum. We plan to explore th
topic more thoroughly in future. Moreover, here appears a
a delicate problem of the boundary conditions, connec
with the expressions~6.20!. The discussion of this problem
we also postpone. Here we mention only that in the therm
dynamic limit we can neglect the boundary effects. On
other hand, in the situation at hand it is much easier a
more convenient to consider the diagram representation
the vacuum matrix element̂0uV2

1V1
1u0& in the ‘‘coordi-

nate’’ representation than in the ‘‘momentum’’ one, whic
we denote here byS, i.e.,

S5^0uV2
1V1

1u0&[^0uGu0&. ~6.23!

B. The diagram representation for S

Our aim now is to calculate the vacuum matrix elementS,
Eq. ~6.23!, for the sum of products of Fermi creation an
annihilation operators. The operatorG entering Eq.~6.23! is
a polynomial in the variablesa( l ), b(k), anm , and bnm

† .
Since G enters in the Eq.~6.23! expectation value form
^0uGu0&, not all terms in the polynomial give a differen
from zero contribution to the matrix elementS. Expanding
G and substituting the expansion into Eq.~6.23!, the quantity
S can be represented in the form of the sum of the vacu
matrix elementsSnSn , whereSn is the vacuum matrix ele-
ment for thenth term of the polynomialG. As it follows
from Eq. ~6.20!, all terms of the polynomialG are products
of various pairsb(k)an,m1kanm anda( l )bnm

† bn1 l ,m
† , which

we will call below a pairs andb pairs. Obviously, all the
terms in the polynomialG with nonequal numbers of thea
and b pairs give vanishing contribution. Moreover, not a
terms in the polynomialG with equal numbers of thea and
b pairs will give nonvanishing contribution toS. Namely,
the nonzero contribution toS will give only these terms with
equal numbers of thea andb pairs, in which each annihila
tion operatoranm is paired with the corresponding creatio
operatorbn8m8

† with identical indices~n5n8, m5m8!. In the
opposite case this term obviously gives no contribution toS.

In this way we arrive at a diagrammatic representation
noticing that to each vacuum matrix elementSn we can
uniquely assign a set of lines~links!, connecting some of the
sites of the lattice. For example, to the graphs in Figs. 1~a!–
1~d! correspond the following matrix elements:
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a~2!b~3!^0uan,m13anmbn,m13
† bn12,m13

† u0& ~a!,

a2~1!a~2!b2~1!b~2!^0uan,m11anman11,m11an11,m21an12,man12,m21

3bn11,m21
† bn12,m21

† bnm
† bn12,m

† bn,m11
† bn11,m11

† u0& ~b!,
~6.24!

a2~1!a2~4!b2~1!b2~2!^0uan,m11anman11,m11an11,man11,m22an11,m24an15,m22an15,m24bn11,m24
† bn15,m24

†

3bn11,m22
† bn15,m22

† bnm
† bn11,m

† bn,m11
† bn11,m11

† u0& ~c!,

a2~2!a~4!b~2!b~3!b~5!30uan,m12anman12,man12,m23an14,m12an14,m23

3bn12,m23
† bn14,m23

† bnm
† bn12,m

† bn,m12
† bn14,m12

† u0& ~d!.
r
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As one can see from the formulas~6.20! and~6.24!, to each
horizontal line of the ‘‘length’’ k corresponds the facto
b(k). Also, to each vertical line of the ‘‘length’’l corre-
sponds the factora( l ). Thea( l ) andb(k) are defined by the
expressions~6.22! for the nonsymmetric case. As was show
above, a nonzero contribution toS gives only these matrix
elementsSn , which do not contain equal numbers of thea
andb pairs. Moreover, the necessary condition for a nonz
contribution is the annihilation operatoranm pair with the
corresponding creation operatorsbnm

† . Geometrically this
condition means that from the whole family of possib
graphs only those for which in each site meet under ‘‘rig
angle’’ only zero or two lines~links! give a nonzero contri-
bution toS. In other words, the graphs in any site of whic
meet two horizontal or two vertical lines are forbidden. T
simplest examples of such graphs are shown in Figs. 1~b!–
1~e!. As a result all graphs giving nonvanishing contributi
to S should be closed. Moreover, in each site of the gra
self-intersections of lines~links! are forbidden, since
(anm)25(bnm

† )250. From the point of view of the graph
theory to the closed graphs described above correspond
oriented Hamilton cycles~with valency of sitesd50,2! on
the simple rectangular lattice@18,23,24#.

In this way the vacuum matrix elementS, Eq. ~6.23!, can
be represented in the form

S5(
n

Sn5( @all closed graphs#, ~6.25!

where in the calculations every multiple-connected grap
counted as one@for example, the graph in Fig. 1~c!#. Every
closed graph gives the contribution equal to

~61!)
j 51

s

a~ l j !b~kj !, ~6.26!

wheres is the number of the horizontal links, which is equ
to the vertical links. Further, applying the connection b
tween thea and b operators, Eqs.~5.15!–~5.19!, and the
Wick theorem@21,22#, one can show that any vacuum matr
element giving nonzero contribution into the sumS, Eq.
~6.25!, can be split into a product of the matrix elemen
corresponding to the connected parts of the graph~which we
will call below for brevity the simple loops without self
o

t

s

n-

is

l
-

,

intersections in the sites of the lattice!. We can check by
direct computation, using the commutation relations~5.17!–
~5.19! for the a and b operators, that, for example, th
graphs from Figs. 1~b!–1~d! contribute with the1 sign.
Other graphs can contribute with the2 sign as well as, for
example, the graph in Fig. 1~e!. Commutation relations for
the a andb operators~5.17!–~5.19! are illustrated in an ap-
pealing way in Fig. 2, where the distinguished operatoranm
~asterisks! for the fixed site (nm) commutes with theb op-
erators in the sites (n8m8), denoted by the cross. For a
others sites thea andb operators anticommute. As a resu
the contribution from each particular graph splits into a pro
uct of contributions from the simple loops. The contributio
from a simple loop withs horizontal ands vertical links is
equal to

Ls5~61!)
j 51

s

a~ l j !b~kj !. ~6.27!

The expression forS, Eq. ~6.25!, is now of the form

S511(
$s%
Ls1 (

$s%,$q%
LsLq1•••[G~h!~z1 ,z2 ,y!,

~6.28!

FIG. 2. ‘‘Geometry’’ of transposition relations fora andb op-
erators:* , a operator;3, b operator.
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where a( l j ) and b(kj ) are functions ofz1[tanhK1, z2
[tanhK2, andy[tanh2(h/2) for the symmetric case, andy
5tanh2 h in the case asymmetric with respect to the param
eter of the external magnetic field (h). A contribution to Eq.
~6.28! gives besides summation over the number of linkss,
also the summation over all lengths of these links$k% and
$ l %, for fixed s. As can be easily seen, the summation in E
~6.28! over the lengths of the horizontal$k% and vertical
$ l % links is performed independently. In the graph theor
@18,23# the function ~6.28! is called the generating func-
tion, as we mentioned above, introducing for it the notatio
G (h)(z1 ,z2 ,y), where the upper index (h) means being a
member of the set of Hamilton cycles. The problem wa
reduced this way to the summation over all Hamilton cycle
with the varying length of the step~edge! on the rectangular
lattice of the type described above.

Now, let us note that the graph representation ofZ2(h),
described above, looks similar to the diagrammatic represe
tation for the statistical sum of the 2D Ising model in th
vanishing magnetic field (h50) ~see, e.g., papers@25–27#!.
In this case, as is known@25#, the statistical sum can be
represented in the form

Z~K1 ,K2!

5~2 coshK1coshK2!NM(
a,b

ga,btanhaK1tanhbK2 ,

~6.29!

wherega,b denotes the number of the closed graphs consi
ing of b horizontal anda vertical links. Since these links
connect the closest sites of the square lattice, to each linka
is assigned the factor~weight! tanhK1, and to each linkb is
assigned the factor tanhK2. In some sites of the graph a
simple self-intersection is possible, i.e., in one site of th
graph meet zero, two, or four lines. This corresponds to t
nonoriented Euler cycles of the degreed<4 @18,24#. In Fig.
3 is shown one of the simplest graphs contributing to the su
~6.29! for Z2(K1 ,K2). The essential difference of this case in
comparison with the case with the field (h), described
above, lies in the latter property, because in our case in o
site of the lattice can meet only zero or two lines~horizontal
and vertical!. This corresponds, as was discussed above,

FIG. 3. The simplest example of a graph~Euler cycles! giving a
contribution to the sum over statesZ(K1 ,K2).
-

.

n
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e
e
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the nonoriented Hamilton cycles on the square latt
@18,24#. The second difference is that thea and b links in
Eq. ~6.28! can connect not only the nearest sites of the
tice. This results in the appearance of dependence of
weight factorsa( l j ) andb(kj ) on the distancesl andk be-
tween the sites of the lattice in the vertical and the horizon
direction, respectively. As we mentioned above, the probl
of calculation of the sum~6.28! can be called in the languag
of the graph theory@18# the problem of summation over th
Hamilton cycles~simple cycles! on the rectangular lattice
with N3M sites with varying ‘‘length’’ of the edges in the
horizontal and in the vertical directions, respectively. Sim
taneously, the problem of the sum~6.29! is equivalent to the
problem of summation over all possible Euler cycles, d
scribed above, of the type (d<4) on the same lattice. As is
known @18#, there is a close correspondence between
Euler and the Hamilton graphs. For some types of Eu
graphs one can consider instead the corresponding Ham
graphs. The reversed statement is not true. In@15# is shown
one more example of the nontrivial connection between
generating functions for the Euler cycles and the Hamil
cycles on the simple rectangular lattice. Namely, in@15# it
was shown that the generating functionG (h)(z1 ,z2 ,y50) for
the Hamilton cycles described above is exactly equal to
generating functionG (e)(z1 ,z2) for the Euler cycles (d<4)
for the 2D Ising model@18#. Therefore the following equality
is true:

G~h!~z1 ,z2!5 )
n51

N

)
m51

M F ~11z1
2!~11z2

2!22z1~12z2
2!

3cos
2pn

N
22z2~12z1

2!cos
2pm

M G1/2

,

~6.30!

wherez1,2[tanhK1,2. Taking in Eq.~6.16! the external mag-
netic field to be equal to zero (h50), and using the equality
~6.30! we arrive at the classical expression@3# for the free
energy on one Ising spin in the 2D Ising model. Let us n
that the contribution of each graph~connected or discon
nected!, which consists of a set of the Hamilton cycles, c
be represented in the form of a product of the determina
of the incidence matricesBn :

~6 !)
n

v

detuBnu,

where v denotes the order of connectedness of the gr
under consideration. It is equal to the number of the sim
loops creating the graph. In this way we conclude that for
computation of the statistical sum for the 2D Ising model
the external magnetic field it is necessary to calculate
generating functions for the Hamilton graphs on the sim
rectangular lattice of the type described above~see
@15,28,29#!.

VII. LIMITING CASES

A. The Onsager solution

Let us briefly discuss one of the methods of reaching
Onsager solution@29#. Setting in Eqs.~6.16! and ~6.19! the
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magnetic field equal to zero (h50), the partition function
Z2 , Eq. ~6.16!, takes the form

Z252NM@~12z1
2!~12z2

2!#2NM/2^0uT2* T1* u0&, ~7.1!

wherez1,25tanh(K1,2), while operatorsT1,2* can be written in
the ‘‘coordinate’’ representation as

T1* 5expH (
n51

N

(
m51

M

(
l 51

N2n

z1
l bnm

† bn1 l ,m
† J ,

T2* 5expH (
n51

N

(
m51

M

(
k51

M2m

z2
kan,m1kanmJ . ~7.2!

The Kac-Ward solution@30#, briefly described in@31#,
contains topological considerations. Namely, for a giv
closed graph~we consider here Euler graphs on a lattice! a
factor a5exp(ip/4) is added to a left turn, and a facto
a215exp(2ip/4) to a right turn. Closed graphs~i.e., which
we want to include! are thus taken into account and forbi
den graphs are compensated if we follow various paths o
these graphs. Full proof of this theorem was given by Sh
man@32#. A similar result holds for Hamiltonian graphs on
lattice with variable length described above which will
shown in simple cases below. However, we will follow th
methods of@27,33# in our consideration.

First of all let us mention that some of the Hamiltonia
loops @e.g., Fig. 1~e!# contribute with a minus~2! sign in
formula ~6.28! for S. Namely, straightforward verification
with the help of commutation relations~5.17! and ~5.18!
shows that each doubly intersecting link of the one shown
Fig. 1~e! contributes a minus sign to an overall sign of
simple loop, Eq.~6.27!, for all admissible diagrams. At th
same time each ‘‘simple double link’’ of the type shown
Fig. 1~f! contributes1 sign to the overall sign of a simpl
loop, Eq. ~6.27!. All other simple loops without ‘‘double
links’’ of those shown in Figs. 1~b!–1~d! come with a plus
~1! sign in the sum~6.28!. ~Let us note that there is a one
one correspondence between Euler graphs on a lattice
Hamiltonian graphs with variable step without ‘‘doub
links,’’ the Hamiltonian graph may contain one, two,
more simple loops. In order to establish this corresponde
it is necessary to select in the Euler graph all intermed
vertices together with intersecting horizontal and verti
links of the Euler graph.!

It is easy to understand now, that if in expression~6.28!
for S all simple loops are taken with a1 sign, all left ~and
right! turns in a simple loop give a factora5exp~ip/4!
@a215exp(2ip/4)], then the problem of calculating the su
for S, Eq. ~6.28!, is in fact reduced to a ‘‘random walk’’ on
a lattice with variable step@27,31,33#. In fact, with such a
way of following simple loops all loops with ‘‘double links’’
cancel@e.g., loops in Figs. 1~e! and 1~d!#, as it should be. In
this way one can follow all the loops with ‘‘double links’
and verify that they cancel each other. Moreover, one
check, using various examples, following the same reaso
as given in@27,31,33# that if we follow various paths over al
Hamiltonian loops with variable step without ‘‘double link
~including relevant weightsa anda21 at each turn! then all
the allowed diagrams will cancel. One should stress here
such full cancellation of forbidden diagrams in every ord
n

er
r-

n

nd

ce
te
l

n
g

at
r

takes place only in the case of factorizable weights (z1
l ,z2

k)
corresponding to step lengthsl andk, respectively.

Returning to our problem and using the results of@27,33#,
we obtain forS, Eq. ~6.28!, the following expression:

S5expS 2(
r 51

`

f r D , ~7.3!

where this term includes a sum over all single loops w
length (r 52s), i.e., consisting ofs horizontal ands vertical
links. Each horizontal line contributes a factor (z2

keiw/2), and
each vertical line a factor (z1

l eiw/2), where angle (w5
6p/2) corresponds to left or right turn. Introducing th
quantity Wr(n,m,n) sum over all possible paths with num
ber of links equal to (r 5s11s2) from a given initial point
(n0 ,m0 ,n0) to a point (n,m,n), where n is the auxiliary
index, corresponding to four directions~1,2,3,4! on a square
lattice, we get forf r

f r5
1

2r (
n0 ,m0n0

Wr~n0 ,m0 ,n0!. ~7.4!

One can easily get the following recursion relations
Wr(n,m,n) with a[exp(ip/4):

Wr 11~n,m,1!501a21(
l 51

N

z1
l Wr~n2 l ,m,2!10

1a(
l 51

N

z1
l Wr~n1 l ,m,4!,

Wr 11~n,m,2!5a(
k51

M

z2
kWr~n,m2k,1!10

1a21(
k51

M

z2
kWr~n,m1k,3!10,

~7.5!

Wr 11~n,m,3!501a(
l 51

N

z1
l Wr~n2 l ,m,2!10

1a21(
l 51

N

z1
l Wr~n1 l ,m,4!,

Wr 11~n,m,4!5a21(
k51

M

z2
kWr~n,m2k,1!10

1a(
k51

M

z2
kWr~n,m1k,3!10.

The meaning of recursion relations~7.5! is evident. Since the
point (n,m,1) can be reached from (n8,m,2) and (n9,m,4);
i.e., from above and from below~direction ‘‘1’’ was chosen
to be ‘‘right’’ !, where n85n2 l , n95n1 l , and l ranges,
strictly speaking, from 1 toN21. However, for largeN the
summation overl can be extended toN, which was done in
expression~7.5!, because in the thermodynamic limit the
boundary conditions do not play a role. Hamiltonian stru
ture of simple loops is evident in the structure of recurs



o
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relations ~7.5!, which should be compared to the case
Euler graphs@31,33#. Writing the relations~7.5! in matrix
form

Wr 11~n,m,n!5 (
n8,m8,n8

L~n,m,nun8,m8,n8!Wr~n8,m8,n8!,

~7.6!

one can easily see that the following relation holds:

TrL r5 (
n0 ,m0 ,n0

Wr~n0 ,m0 ,n0!, ~7.7!

and also

f r5
1

2r
TrL r5

1

2r (
i

l i
r . ~7.8!
fTaking into account Eqs.~7.4! and ~3.6! we get forS, Eq.
~7.3!, the following relation:

S5)
i

A12l i , ~7.9!

where l i is the eigenvalue of the matrixL(n,m,n) ( i
51,2, . . . ,4NM). The matrixL(n,m,n) can be easily di-
agonalized over indices (n,m) with the help of Fourier trans-
formation:

Wr~n,m,n!5 (
q,p50

N,M

e~2p i /N!nq1~2p i /M !mpWr~q,p,n!.

~7.10!

Inserting Eq.~7.10! into Eq. ~7.5!, for fixed (q,p) we get
L~q,p,nuq,p,n8!53
0 a21(

l 51

N

z1
l «2 lq 0 a(

l 51

N

z1
l « lq

a(
k51

M

z2
kv2kp 0 a21(

k51

M

z2
kvkp 0

0 a(
l 51

N

z1
l «2 lq 0 a21(

l 51

N

z1
l « lq

a21(
k51

M

z2
kv2kp 0 a(

k51

M

z2
kvkp 0

4 , ~7.11!

wherea[exp(ip/4), «[exp(2pi/N), v[exp(2pi/M).
It is evident that for fixed (q,p) it suffices to calculate the determinant of the (434) matrix:

)
j 51

4

~12l j !5Det~dnn82Lnn8![A~q,p!, ~7.12!

and after simple calculations forA(q,p), Eq. ~7.12!, we get the following formula:

A~q,p!5
~11z1

2!~11z2
2!22z1~12z2

2!cos~2pq/N!22z2~12z1
2!cos~2pp/M !

@122z1cos~2pq/N!1z1
2#@122z2cos~2pp/M !1z2

2#
. ~7.13!

In Eq. ~7.13! we have neglected the terms proportional toz1
N andz2

M , since for largeN andM , z1
N'0 andz2

M'0, for z1,2,1.
Finally for asymptotically largeN,M for S, Eq. ~7.9!, with the help of Eq.~7.13! we get

S5)
i

A12l i5 )
q,p50

N,M

A1/2~q,p!5 )
q,p50

N,M F ~11z1
2!~11z2

2!22z1~12z2
2!cos~2pq/N!22z2~12z1

2!cos~2pp/M !

@122z1cos~2pq/N!1z1
2#@122z2cos~2pp/M !1z2

2#
G1/2

.

~7.14!
n-
u-
Of course, for asymptotically largeN,M the expression
~7.14! goes to expression~6.30!, because of the following
relations:

)
q50

N S 122z1cos
2pq

N
1z1

2D51,
)
p50

M S 122z2cos
2pp

N
1z2

2D51,

for (N,M→`), z1,2,1. Finally, using Eq.~6.23! and insert-
ing Eq. ~7.14! into formula ~7.1!, for free energy per Ising
spin in the thermodynamic limit we get the well known O
sager solution@3#. The method of finding the Onsager sol
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tion, given in this paper, disregarding its complications,
lows for analytical study of the Ising-Onsager problem
external magnetic field in several limiting cases in two a
three dimensions. The proposed method of receiving the
sager solution, as well as previously known graphical me
ods, works only for case„a( l )5z1

l , b(k)5z2
k , l (k)

51,2, . . .…. It can be shown that all these methods are
applicable if factorsa( l ) andb(k) have different functional
structure. Anyhow, contrary to all previously derived me
ods ~graphical and soon! the presented method allows,
such or another approximation, for accounting external m
netic fieldH.

B. Low-temperature asymptotic for F 2D„h…

The aim of this section is to consider the free energy
one Ising spin in the external magnetic field for some lim
cases. For that reason the parameters (K1,2,h) are to be
renormalized in the following way (K1,2>0):

sinh2K1,2* 5b1,2$sinh2K1,2@12tanh2~h/2!#%,

cosh~2K1,2* !5b1,2@cosh2K1,21tanh2~h/2!sinh2K1,2#,
~7.15!

b1,25@112 tanh2~h/2!sinh2K1,2e
2K1,2#21/2,

tanh2h1,2* 5tanh2~h/2!
b1,2exp~2K1,2!

cosh2K1,2*
.

The above presented formulas are adequate for the symm
cal case. For the asymmetric case it is sufficient to substit
for instance,K2*→K2 , h2*→0. In short, in this case only th
parameterK1 and the fieldh are subjects of renormalization
Formulas~6.21! and ~6.22! included in Eq.~6.20! take the
form

a~ l !5z1*
l1tanh2h1*

12z1*
l

~12z1* !2 ,

b~k!5z2*
k1tanh2h2*

12z2*
k

~12z2* !2 , ~7.16!

for the symmetrical case and

a~ l !5z1*
l1tanh2h*

12z1*
l

~12z1* !2 , b~k!5z2
k , ~7.17!

for the asymmetrical one.
Equations~7.15!–~7.17! and the way they were derive

point to the possibility of obtaining series of asymptotics
free energy per one Ising spin for 2D Ising model in t
external magnetic field (H). In paper@15# it has been shown
that vacuum matrix elementS5^0uV2

1V1
1u0&, appearing in

Eq. ~6.16! for Z2
1(h), for the case„a( l )5y, b(k)5z2

k
… is

equal to
-

d
n-
-

t

-

g-

r
t

tri-
e,

r

S5G~h!~z2 ,y!

5 )
0,q,p,p

@11z2
212z2y22z2~12y!cos~p!#2.

~7.18!

The above formula may be used to obtain low-temperat
asymptotic solution for the free energyF2D(h) per one Ising
spin in the thermodynamic limits. Note that the conditio
@ tanh2h* /(12z1* )2#→1, together with Eq.~7.15!, is equivalent
to @exp(22K1)(12tanh2h)→0#. For given J15const, H
5const the above formulated condition is fulfilled for tem
perature areaT, whenh;e21, «!1. For that reason, if, for
instance, @12tanh2h* /(12z1* )2#;«, then a( l )5tanh2h* /(1
2z1* )21;«z1*

l . Consequently in this case the resu
~7.18! may be applied. To prove it let us consider Eq.~6.15!
for B1(q,h), expressed by renormalized paramete
(h* ,K1* ):

B1~q,h!5
tanh2h* sinq/~12cosq!12z1* sinq

122z1* cosq1z1*
2 ,

~7.19!

wherez1* 5tanhK1* , and h* and K1* connected withh and
K1 as was shown in Eq.~7.15!. Moreover, due to identity

z1*

11z1*
2 5

z1~12tanh2h!

112z1tanh2h1z1
2 ,

introducing a small parameter (12tanhh);«, «!1, and de-
velopingB1(q,h) into series along« (z1* ;«), we obtain

B1~q,h!5
~ tanh2h* 12z1* !sinq

12cosq
1;«2.

Substituting the last expression to Eq.~6.22! we come to the
formula

a~ l !5tanh2h* 12z1* , ~7.20!

describinga( l ) with exactness to the second power of«
(;«2), i.e., in this approximationa( l ) does not depend onl .
Finally, substituting in Eq.~7.18! y for a( l ) expressed by Eq
~7.20! we receive in the limiting case the following expre
sion for the free energyF2D(h):

2bF2D~h!; ln~2 coshK1* coshK2coshh!

1
1

2p E
0

p

ln@11z2
212z2~ tanh2h* 12z1* !

22z2~12tanh2h* 22z1* !cosp#dp, ~7.21!

where h* and K1* depend onh and K1 according to Eq.
~7.15!. Note that the derived approximation~7.21! may also
be applied to the case of comparably strong magnetic fi
(H) for which (12tanhh);«, «!1(T5const).

C. High-temperature approximation

In the range of high temperature we impose (J1,2/kBT
;«), «!1 ~J1,25const,H5const!, i.e., z1,25tanhK1,2;«.
In this approximation the bra vector̂0uT2 , expressed in
terms ofa operators by Eq.~5.45!, can be written as
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^0uT2.^0uexpS z2(
n51

N

(
m51

M

bn,m11bnmD ,

i.e., expressed in terms ofb operators, multiplying all phase
coefficientswnm , Eq. ~5.15!, by bra vector̂ 0u. It allows for
diagonalization of the operatorT5T2T1Th* in Eq. ~6.1! and
calculation of the vacuum matrix element^0uTu0&. We will
not consider the expressions for the free energy, as the a
mentioned approximation seems to be a crude approxima
and is not of special interest.

VIII. CONCLUSIONS

The case of infinitely small external magnetic field is ve
interesting~h;«, «!1, T5const!. Because in Eqs.~6.15!
and ~7.15! the magnetic fieldh appears in tanh2 h function,
the computations should be carried out up to the second
(«2) inclusive. The presented approach allows for respec
calculations, nevertheless they are long and complica
enough to present them in another paper. We should o
like to note here a case connected with calculations of
free energy for the external magnetic fieldH asymptotic
tending to zero, i.e., fulfilling the condition~h→0,
N,M→`!. Neglecting in Eq.~7.16! for a( l ) andb(k) terms
proportional to tanh2 h1,2* ;tanh2h/2 for a( l ) and b(k) we
obtain the following asymptotic expressions:

a~ l !;z1*
l , b~k!;z2*

k ~h→0, T5const!.
s.

cs

,

s

ve
on

rm
e
d
ly
e

In this case we can automatically derive the expression
the free energy, substituting in Eq.~7.14! z1,2 for z1,2* :

2bF2D~h→0!; ln212ln~coshh/2!

1
1

2p2 E
0

pE
0

p

ln@cosh2K1* cosh2K2*

2sinh2K1* cosq2sinh2K2* cosp#dqdp,

where cosh2K1,2* and sinh2K1,2* are defined by Eqs.~7.15!.
This is the leading asymptotic term and the latter forh
50) given Onsager solution. The procedure is equivalen
considering the asymptotically vanishing magnetic fieldh in
the zero-order approximation, which in the author’s opini
is worth analyzing.

The above presented approach to the Lenz-Ising-Ons
problem, on the example of 1D and 2D Ising model in t
external magnetic field may be extended on the 3D Is
model in the external magnetic field for the purpose of o
taining the low-temperature approximation. All calculatio
are then, in fact, the same as the ones leading to Eq.~7.21!,
apart from details connected with dimension of the cons
ered system. The obtained results will be a subject of a fu
paper.
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